【題目】如圖, 是半徑為 的⊙ 的直徑, 是圓上異于 , 的任意一點(diǎn), 的平分線交⊙ 于點(diǎn) ,連接 和 ,△ 的中位線所在的直線與⊙ 相交于點(diǎn) 、 ,則 的長(zhǎng)是.
【答案】4
【解析】如圖所示:
∵PC是∠APB的角平分線,∴∠APC=∠CPB,
∴AC=BC
∵AB是直徑,
∴∠ACB=90.
即△ABC是等腰直角三角形,
連接OC,交EF于點(diǎn)D,則OC⊥AB;
∵M(jìn)N是△ABC的中位線,
∴MN∥AB;
∴OC⊥EF,OD= OC=2.
連接OE,根據(jù)勾股定理,得:DE= =2 ,
∴EF=2ED=4 .
故答案為:.
連接OE、OC,交EF于點(diǎn)D.易證出△ABC是等腰直角三角形,則OC⊥AB;由MN是△ABC的中位線可知OC⊥EF,進(jìn)而求出OD的長(zhǎng),再由勾股定理可求出DE的長(zhǎng),由垂徑定理可得EF的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)三角形知識(shí)時(shí),發(fā)現(xiàn)如下三個(gè)有趣的結(jié)論:在中,,平分,為直線上一點(diǎn),,為垂足,的平分線交直線于點(diǎn),回答下列問(wèn)題并說(shuō)明.(可在圖上標(biāo)注數(shù)字角)
(1)如圖①,為邊上一點(diǎn),則、的位置關(guān)系是________.請(qǐng)給予證明;
(2)如圖②,為邊反向延長(zhǎng)線上一點(diǎn),則、的位置關(guān)系是________.(請(qǐng)直接寫出結(jié)論)
(3)如圖③,為邊延長(zhǎng)線上一點(diǎn),則、的位置關(guān)系是________.請(qǐng)給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC度數(shù).小明的思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可求得∠APC的度數(shù).請(qǐng)寫出具體求解過(guò)程.
問(wèn)題遷移:
(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)坐標(biāo)分別為,,,把三角形ABC向右平移2個(gè)單位長(zhǎng)度,再向下平移4個(gè)單位長(zhǎng)度后得到三角形.
(1)畫出三角形ABC和平移后的圖形;
(2)寫出三個(gè)頂點(diǎn),,的坐標(biāo);
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用長(zhǎng)為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計(jì)).
(Ⅰ)求出 與 的函數(shù)關(guān)系式;
(Ⅱ)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)對(duì)某校七年級(jí)學(xué)生體育選修課程的統(tǒng)計(jì),得到以下信息:
①參加選課的總?cè)藬?shù)為300;
②參加選課的學(xué)生在“足球、籃球、排球、乒乓球”中都選擇了一門;
③選足球和選排球的人數(shù)共占總?cè)藬?shù)的50%;選乒乓球的人數(shù)是選排球人數(shù)的2倍;
選足球和選籃球的人數(shù)共占總?cè)藬?shù)的85%.
設(shè)選足球的人數(shù)為x,選排球的人數(shù)為y,試列出二元一次方程組,分別求出選擇足球、籃球、排球、乒乓球各門課程的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=6cm,BC=12cm,∠B=90°.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),如果P,Q分別從A,B同時(shí)出發(fā),設(shè)移動(dòng)時(shí)間為t(s).
(1)當(dāng)t=2時(shí),求△PBQ的面積;
(2)當(dāng) 為多少時(shí),四邊形APQC的面積最。孔钚∶娣e是多少?
(3)當(dāng) 為多少時(shí),△PQB與△ABC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A為 邊上任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示sin 的值,錯(cuò)誤的是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com