已知拋物線(xiàn)①經(jīng)過(guò)點(diǎn)A(-1,0)、B(4,5)、C(0,-3),其對(duì)稱(chēng)軸與直線(xiàn)BC交于點(diǎn)P.
(1)求拋物線(xiàn)①的表達(dá)式及點(diǎn)P的坐標(biāo);
(2)將拋物線(xiàn)①向右平移1個(gè)單位后再作上下平移,得到的拋物線(xiàn)②恰好過(guò)點(diǎn)P,求上下平移的方向和距離;
(3)設(shè)拋物線(xiàn)②的頂點(diǎn)為D,與y軸的交點(diǎn)為E,試求∠EDP的正弦值.

解:(1)據(jù)題意設(shè)拋物線(xiàn)的表達(dá)式為y=ax2+bx-3,
,
解得
∴拋物線(xiàn)的表達(dá)式為y=x2-2x-3,
∴對(duì)稱(chēng)軸為直線(xiàn)x=1,
據(jù)題意設(shè)直線(xiàn)BC的解析式為y=kx-3,則5=4k-3,k=2,
∴直線(xiàn)BC的解析式為y=2x-3,
∴P(1,-1);

(2)設(shè)拋物線(xiàn)①向右平移1個(gè)單位后再向上平移m個(gè)單位得拋物線(xiàn)②,
則拋物線(xiàn)②的表達(dá)式為y=(x-1-1)2-4+m,
∵拋物線(xiàn)②過(guò)點(diǎn)P,
∴-1=(1-1-1)2-4+m,
∴m=2,
∴再將它向上移動(dòng)2個(gè)單位可得到拋物線(xiàn)②;

(3)∵拋物線(xiàn)①向右移動(dòng)1個(gè)單位,再向上平移2個(gè)單位得到拋物線(xiàn)②,
∴拋物線(xiàn)②的表達(dá)式是y=(x-1-1)2-4+2,即y=(x-2)2-2,
∴D(2,-2),E(0,2),
∵P(1,-1),
∴直線(xiàn)DP過(guò)點(diǎn)O,且與x軸夾角為45°,
過(guò)點(diǎn)E作EH⊥DP于點(diǎn)H,
∴∠EOH=45°,
∵E(0,2),
∴EH=,而ED==2,
∴sin∠EDP==
分析:(1)根據(jù)題意設(shè)拋物線(xiàn)的表達(dá)式為y=ax2+bx-3,將A、B兩點(diǎn)的坐標(biāo)代入求得a、b的值,進(jìn)而求得拋物線(xiàn)的對(duì)稱(chēng)軸.根據(jù)B、C兩點(diǎn)的坐標(biāo)求得直線(xiàn)BC的解析式.對(duì)稱(chēng)軸與直線(xiàn)BC交于點(diǎn)P,因而P的坐標(biāo)即可確定.
(2)設(shè)拋物線(xiàn)①向右平移1個(gè)單位后再向上平移m個(gè)單位得拋物線(xiàn)②,根據(jù)拋物線(xiàn)①的頂點(diǎn)式解析式,寫(xiě)出拋物線(xiàn)②的頂點(diǎn)式解析式.再將(1)中得到的P點(diǎn)坐標(biāo)值代入,即可求得m的值,那么拋物線(xiàn)②上下平移的方向和距離也就得知.
(3)首先根據(jù)(2)寫(xiě)出拋物線(xiàn)②的解析式,D點(diǎn)的坐標(biāo)也就確定.因?yàn)镋點(diǎn)是拋物線(xiàn)②與y軸的交點(diǎn),那么可求得P點(diǎn)的坐標(biāo)值.首先根據(jù)D、P點(diǎn)的坐標(biāo),可得到直線(xiàn)DP與x軸夾角.再利用角間的關(guān)系及三角函數(shù),得到結(jié)果.
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、拋物線(xiàn)的平移等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生利用拋物線(xiàn)的頂點(diǎn)式解決平移,以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)(1,5)和(3,5),則拋物線(xiàn)的對(duì)稱(chēng)軸為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-1,5),B(5,5),C(1,9),則該拋物線(xiàn)上縱坐標(biāo)為9的另一點(diǎn)的坐標(biāo)是
(3,9)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)、C(0,3),以AB為直徑畫(huà)圓.
(1)求此拋物線(xiàn)的解析式;
(2)求該圓與拋物線(xiàn)交點(diǎn)(除A、B外)坐標(biāo);
(3)以AB的中點(diǎn)O′為圓心畫(huà)圓,該圓的半徑r與此拋物線(xiàn)的交點(diǎn)個(gè)數(shù)有何關(guān)系(直接寫(xiě)出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-3,0),B(0,3),C(2,0)三點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)如果點(diǎn)D(1,m)在這條拋物線(xiàn)上,求m的值的點(diǎn)D關(guān)于這條拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)E的坐標(biāo),并求出tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),拋物線(xiàn)對(duì)稱(chēng)軸l與x軸相交于點(diǎn)M.
(1)求拋物線(xiàn)的解析式和對(duì)稱(chēng)軸;
(2)點(diǎn)P在拋物線(xiàn)上,且以A、O、M、P為頂點(diǎn)的四邊形四條邊的長(zhǎng)度為四個(gè)連續(xù)的正整數(shù),請(qǐng)你直接寫(xiě)出點(diǎn)P的坐標(biāo);
(3)連接AC.探索:在直線(xiàn)AC下方的拋物線(xiàn)上是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)你求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案