【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(1,0).點(diǎn)P第1次向上跳動1個單位至點(diǎn)P1(1,1),緊接著第2次向左跳動2個單位至點(diǎn)P2(-1,1),第3次向上跳動1個單位至點(diǎn)P3,第4次向右跳動3個單位至點(diǎn)P4,第5次又向上跳動1個單位至點(diǎn)P5,第6次向左跳動4個單位至點(diǎn)P6,…….照此規(guī)律,點(diǎn)P第100次跳動至點(diǎn)P100的坐標(biāo)是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

【答案】C

【解析】經(jīng)過觀察可得:P1P2的縱坐標(biāo)均為1,P3P4的縱坐標(biāo)均為2,P5P6的縱坐標(biāo)均為3,因此可以推知P99P100的縱坐標(biāo)均為100÷2=50;

其中4的倍數(shù)的跳動都在y軸的右側(cè),那么第100次跳動得到的橫坐標(biāo)也在y軸右側(cè).P1橫坐標(biāo)為1,P4橫坐標(biāo)為2,P8橫坐標(biāo)為3,依此類推可得到:Pn的橫坐標(biāo)為n÷4+1(n4的倍數(shù)).

故點(diǎn)P100的橫坐標(biāo)為:100÷4+1=26,縱坐標(biāo)為:100÷2=50,點(diǎn)P100次跳動至點(diǎn)P100的坐標(biāo)是(26,50).

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校測量了全校800名男生的身高,并進(jìn)行了分組,已知身高在1.70~1.75(單位:m)這一組的頻率為0.25,則該組共有男生(

A. 100B. 200C. 250D. 400

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2x321的頂點(diǎn)坐標(biāo)是( )

A. 3,1B. 3,-1C. (-31D. (-3,-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(  )

A. ﹣4x8÷2x4=﹣3x2 B. 2x3x=6x C. ﹣2x+x=﹣3x D. (﹣x34=x12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)

如圖,已知AB∥CD,BE、CF分別平分∠ABC和∠DCB,求證:BE∥CF

證明:∵AB∥CD,(已知)

∴∠_______=∠_______.(_________________________)

∵_(dá)_________________________________________,(已知)

∴∠EBC=_______,(角平分線定義)

同理,∠FCB=______________.

∴∠EBC=∠FCB.(等式性質(zhì))

∴BE//CF.( ____________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中有兩點(diǎn)Mab),Ncd),規(guī)定(ab)⊕(c,d)=(a+c,b+d),則稱點(diǎn)Qa+c,b+d)為M,N的“和點(diǎn)”.若以坐標(biāo)原點(diǎn)O與任意兩點(diǎn)及它們的“和點(diǎn)”為頂點(diǎn)能構(gòu)成四邊形,則稱這個四邊形為“和點(diǎn)四邊形”,現(xiàn)有點(diǎn)A(2,5),B(﹣1,3),若以O,AB,C四點(diǎn)為頂點(diǎn)的四邊形是“和點(diǎn)四邊形”,則點(diǎn)C的坐標(biāo)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】_________的絕對值是它本身

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把方程3x(x+1)=2(x–2)+8化為一般形式______,二次項系數(shù)______,一次項系數(shù)__________,常數(shù)項______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x(x+2)=0的解是(

A. x=0 B. x=2 C. x1=0,x2=2 D. x1=0,x2=-2

查看答案和解析>>

同步練習(xí)冊答案