【題目】(1)如圖 1,四邊形 ABCD 中,∠BAD=∠ADC=∠CBA=90°,AB=AD,點 E、F 分別在四邊形 ABCD 的邊 BC、CD 上,∠EAF=45°,點 G 在 CD 的延長線上,BE=DG,連接 AG,求證:EF=BE+FD.
(2)如圖 2,四邊形 ABCD 中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點 E、F 分別在邊BC、CD 上,則當∠BAD=2∠EAF 時,仍有 EF=BE+FD 成立嗎?說明理由.
(3)如圖 3,四邊形 ABCD 中,∠BAD≠90°,AB=AD,AC 平分∠BCD,AE⊥BC 于 E,AF⊥CD 交 CD 延長線于 F,若 BC=9,CD=4,則 CE= .(不需證明)
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】
(1)證明△ADG≌△ABE,根據(jù)全等三角形的性質得到AG=AE,∠DAG=
∠BAE,證明△AFG≌△AFE,得到GF=EF,證明結論;
(2)延長CB至 M,使 BM=DF,連接 AM,分別證明△ABM≌△ADF和△FAE≌△MAE,根據(jù)全等三角形的性質解答;
(3)證明 Rt△AEB≌Rt△AFD,根據(jù)全等三角形的性質得到BE=DF,根據(jù)題意列式計算.
(1)在△ADG和△ABE中,
,
∴△ADG≌△ABE(SAS),
∴AG=AE,∠DAG=∠BAE,
∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF 和△FAE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
(2)EF=BE+DF.
理由如下:如圖2所示,延長CB至M,使BM=DF,連接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,即EF=BE+DF;
(3)∵AC平分∠BCD,AE⊥BC,AF⊥CD,
∴AE=AF,
在Rt△AEB和Rt△AFD中,
,
∴Rt△AEB≌Rt△AFD(HL),
∴BE=DF,
由題意得,CE+BE=9,CE﹣BE=4,
解得,CE=6.5,
故答案為:6.5.
科目:初中數(shù)學 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折(折扣相同),其余兩次均按標價購買.三次購買商品A、B的數(shù)量和費用如下表:
購買商品A的數(shù)量/個 | 購買商品B的數(shù)量/個 | 購買總費用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第 次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人騎自行車勻速同向行駛,乙在甲前面100米處,同時出發(fā)去距離甲1300米的目的地,其中甲的速度比乙的速度快.設甲、乙之間的距離為y米,乙行駛的時間為x秒,y與x之間的關系如圖所示.甲到達目的地時,乙距目的地還有_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點P為第三象限內(nèi)拋物線上的一點,設△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究題:
(1)如圖1,兩條水平的直線被一條豎直的直線所截,同位角有__________對,內(nèi)錯角有__________對,同旁內(nèi)角有__________對;
(2)如圖2,三條水平的直線被一條豎直的直線所截,同位角有__________對,內(nèi)錯角有__________對,同旁內(nèi)角有__________對;
(3)根據(jù)以上探究的結果,n(n為大于1的整數(shù))條水平直線被一條豎直直線所截,同位角有__________對,內(nèi)錯角有__________對,同旁內(nèi)角有__________對.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明早晨從家里出發(fā)勻速步行去上學,小明的媽媽在小明出發(fā)后10分鐘,發(fā)現(xiàn)小明的數(shù)學課本沒帶,于是她帶上課本立即勻速騎車按小明上學的路線追趕小明,結果與小明同時到達學校.已知小明在整個上學途中,他出發(fā)后t分鐘時,他所在的位置與家的距離為s千米,且s與t之間的函數(shù)關系的圖象如圖中的折線段OA﹣AB所示.
(1)試求折線段OA﹣AB所對應的函數(shù)關系式;
(2)請解釋圖中線段AB的實際意義;
(3)請在所給的圖中畫出小明的媽媽在追趕小明的過程中,她所在位置與家的距離s(千米)與小明出發(fā)后的時間t(分鐘)之間函數(shù)關系的圖象.(友情提醒:請對畫出的圖象用數(shù)據(jù)作適當?shù)臉俗ⅲ?/span>
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,l1表示某公司一種產(chǎn)品一天的銷售收入與銷售量的關系,l2表示該公司這種產(chǎn)品一天的銷售成本與銷售量的關系.
(1)x=1時,銷售收入= 萬元,銷售成本= 萬元,盈利(收入﹣成本)= 萬元;
(2)一天銷售 件時,銷售收入等于銷售成本;
(3)l2對應的函數(shù)表達式是 ;
(4)你能寫出利潤與銷售量間的函數(shù)表達式嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com