【題目】如圖,已知矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C/處,BC/ADEAD=8,AB=4,DE的長=________________

【答案】5

【解析】

首先根據(jù)矩形的性質(zhì)可得出ADBC,即∠1=3,然后根據(jù)折疊知∠1=2,C′D=CDBC′=BC,可得到∠2=3,進(jìn)而得出BE=DE,設(shè)DE=x,則EC′=8-x,利用勾股定理求出x的值,即可求出DE的長.

∵四邊形ABCD是矩形,
ADBC,即∠1=3
由折疊知,1=2,C′D=CD=4、BC′=BC=8,
∴∠2=3,即DE=BE
設(shè)DE=x,EC′=8x,
RtDEC′,DC′2+EC′2=DE2
42+(8x)2=x2解得:x=5
DE的長為5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一塊長16m,寬12m的矩形荒地上,要建造一個(gè)花園,要求花園面積是荒地面積的一半,如圖所示分別是小華與小芳的設(shè)計(jì)方案.同學(xué)們都認(rèn)為小華的方案是正確的,但對(duì)小芳方案是否符合條件有不同意見,你認(rèn)為小芳的方案符合條件嗎?若不符合,請(qǐng)你依照小芳的方案設(shè)計(jì)小路的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)T.下列各點(diǎn)P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在該函數(shù)圖象上的點(diǎn)有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,,,AD、BE相交于點(diǎn)M,連接CM
求證:
的度數(shù)用含的式子表示
如圖2,當(dāng)時(shí),點(diǎn)P、Q分別為AD、BE的中點(diǎn),分別連接CP、CQPQ,判斷的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,△ABC的周長為38cm,∠BAC=140°,AB+AC=22cmAB、AC的垂直平分線分別交BCEF,與ABAC分別交于點(diǎn)D、G.

(1)求∠EAF的度數(shù).

(2)求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,

如圖①,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),所得到與交于點(diǎn),則的長________

如圖②,點(diǎn)是邊上一點(diǎn),將線段繞點(diǎn)旋轉(zhuǎn),得線段,點(diǎn)始終為的中點(diǎn),則將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)________度時(shí),線段的長最大,最大值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖2211拋物線yax2+2axc(a>0)y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.

(1)求拋物線的解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;

(3)拋物線線上是否存在一點(diǎn)P,使,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,,以為直徑作分別交于點(diǎn),,連接,過點(diǎn),垂足為,交于點(diǎn)

(1)求證:

(2)若,求線段的長;

(3)在的條件下,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)即停止;同時(shí)點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)即停止.點(diǎn)、的速度的速度都是,連結(jié),,,設(shè)點(diǎn)、運(yùn)動(dòng)的時(shí)間為

當(dāng)為何值時(shí),四邊形是矩形?

當(dāng)為何值時(shí),四邊形是菱形?

分別求出中菱形的周長和面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案