【題目】如圖,BC是半⊙O的直徑,點(diǎn)P是半圓弧的中點(diǎn),點(diǎn)A是弧BP的中點(diǎn),ADBCD,連結(jié)AB、PB、ACBP分別與AD、AC相交于點(diǎn)EF

1)求證:AE=BE;

2)判斷BEEF是否相等嗎,并說(shuō)明理由;

3)小李通過(guò)操作發(fā)現(xiàn)CF=2AB,請(qǐng)問(wèn)小李的發(fā)現(xiàn)是否正確?若正確,請(qǐng)說(shuō)明理由;若不正確,請(qǐng)寫(xiě)出CFAB正確的關(guān)系式.

【答案】1)見(jiàn)解析;(2BE=EF,理由見(jiàn)解析;(3)小李的發(fā)現(xiàn)是正確的,理由見(jiàn)解析

【解析】

1)如圖1,連接AP,由BC是半⊙O的直徑,ADBCD,得到∠ACB+ABC=BAD+ABD=90°,于是得到∠ACB=BAD,根據(jù)圓周角定理得到∠P=ACB=ABP,即可求出結(jié)論;

2)根據(jù)圓周角定理求出∠ABE=BAE,求出AE=BE,求出∠CAD=AFB,求出AE=EF,即可得出答案;

3)根據(jù)全等三角形的性質(zhì)和判定求出BG=CFAB=AG,即可得出答案.

1)如圖1,連接AP,

BC是半⊙O的直徑,

∴∠BAC=90°,

ADBCD,

∴∠ADB=90°,

∴∠ACB+ABC=BAD+ABD=90°,

∴∠ACB=BAD

∵點(diǎn)A是弧BP的中點(diǎn),

∴∠P=ACB=ABP,

∴∠ABE=BAE

AE=BE;

2BE=EF,

理由是:∵BC是直徑,ADBC

∴∠BAC=ADC=90°,

∴∠BAD=ACB

A為弧BP中點(diǎn),

∴∠ABP=ACB

∴∠BAD=ABP

BE=AE,∠FAD=AFB,

EF=AE,

BE=EF;

3)小李的發(fā)現(xiàn)是正確的,

理由是:如圖2,延長(zhǎng)BA、CP,兩線交于G

P為半圓弧的中點(diǎn),A是弧BP的中點(diǎn),

∴∠PCF=GBP,∠CPF=BPG=90°,BP=PC,

PCFPBG中,

,

∴△PCF≌△PBGASA),

CF=BG

BC為直徑,

∴∠BAC=90°,

A為弧BP中點(diǎn),

∴∠GCA=BCA

BACGAC中,

∴△BAC≌△GACASA),

AG=AB=BG,

CF=2AB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象與y軸相交于點(diǎn)(0,3),并經(jīng)過(guò)點(diǎn)(2,5),它的對(duì)稱軸是x1,如圖為函數(shù)圖象的一部分.

1)求函數(shù)解析式,寫(xiě)出函數(shù)圖象的頂點(diǎn)坐標(biāo);

2)在圖中,畫(huà)出函數(shù)圖象的其余部分;

3)如果點(diǎn)Pn,2n)在上述拋物線上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小亮兩人用如圖所示的兩個(gè)分隔均勻的轉(zhuǎn)盤(pán)做游戲:分別轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,將兩個(gè)指針?biāo)笖?shù)字相加(若指針恰好停在分割線上,則重轉(zhuǎn)一次).如果這兩個(gè)數(shù)字之和小于8(不包括8),則小明獲勝;否則小亮獲勝。

(1)利用列表法或畫(huà)樹(shù)狀圖的方法表示游戲所有可能出現(xiàn)的結(jié)果;

(2)這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小區(qū)為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余、可回收和其他三類,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分別記為A,B,C

1)若小明將一袋分好類的生活垃圾隨機(jī)投入一類垃圾箱,請(qǐng)畫(huà)樹(shù)狀圖或列表求垃圾投放正確的概率;

2)為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該小區(qū)三類垃圾箱中總共100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下表(單位:噸):

試估計(jì)該小區(qū)居民“廚余垃圾”投放正確的概率約是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O的直徑,C為O上一點(diǎn),其中AB=4,AOC=120°,P為O上的動(dòng)點(diǎn),連AP,取AP中點(diǎn)Q,連CQ,則線段CQ的最大值為( 。

A. 3 B. 1+ C. 1+3 D. 1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019101日的建國(guó)70周年慶典上,有多國(guó)領(lǐng)導(dǎo)人出席觀看了我國(guó)盛大的閱兵儀式.為表示友好,我國(guó)政府選擇將刺繡和陶瓷兩類工藝品作為國(guó)禮贈(zèng)送給所有的來(lái)賓.甲,乙兩個(gè)工廠分別承接了制作,兩種刺繡與種陶瓷的任務(wù).甲工廠安排100名工人制作刺繡,每人只能制作其中一種刺繡,乙工廠安排50名工人制作種陶瓷.的人均制作數(shù)量比的人均制作數(shù)量少3件,的人均制作量比的人均制作量少20%.若本次贈(zèng)送的國(guó)禮(,三樣禮品)的人均制作數(shù)量比的人均制作數(shù)量少30%,且的人均制作數(shù)量為偶數(shù)件,則本次贈(zèng)送的國(guó)禮共制作了_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),點(diǎn)拋物線的頂點(diǎn).

1)求直線的解析式;

2)拋物線對(duì)稱軸交軸于點(diǎn),為直線上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)于點(diǎn),當(dāng)線段的長(zhǎng)最大時(shí),連接,過(guò)點(diǎn)作射線,且,點(diǎn)為射線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),連接,中點(diǎn),連接,求的最小值;

3)如圖2,平移拋物線,使拋物線的頂點(diǎn)在射線上移動(dòng),點(diǎn),平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn),軸上有一動(dòng)點(diǎn),連接,,是否能為等腰直角三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動(dòng)點(diǎn)P、Q分別以3cm/s、2cm/s的速度從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動(dòng).

(1)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?

(2)若點(diǎn)P沿著AB→BC→CD移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)D停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),試探求經(jīng)過(guò)多長(zhǎng)時(shí)間PBQ的面積為12cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知OA,OB的長(zhǎng)是方程x2-7x+12=0的兩個(gè)(OA>OB),點(diǎn)P從點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)Q從點(diǎn)A出發(fā)沿AO方向向點(diǎn)O勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,連結(jié)PQ.若設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0t2).

(1)AB長(zhǎng);

(2)當(dāng)t為何值時(shí),APQAOB相似?

(3)當(dāng)t為何值時(shí),AQP的面積為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案