【題目】如圖,在平面直角坐標(biāo)系中,ABC的一邊ABx軸上,∠ABC=90°,點(diǎn)C4,8)在第一象限內(nèi),ACy軸交于點(diǎn)E,拋物線經(jīng)過(guò)A、B兩點(diǎn),與y軸交于點(diǎn)D0,﹣6).

1)請(qǐng)直接寫出拋物線的表達(dá)式;

2)點(diǎn)Px軸下方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m,PAC的面積為S,試求出Sm的函數(shù)關(guān)系式;

3)若點(diǎn)Mx軸正半軸上一點(diǎn)(不與點(diǎn)A重合),拋物線上是否存在點(diǎn)N,使∠CAN=MAN.若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2);(3)N

【解析】

1)先確定B4,0),再利用待定系數(shù)法求出拋物線解析式為y=
2)先利用待定系數(shù)法求得直線AC的解析式為y= ,作PQy軸交ACQ,設(shè)Pm,),則Qm,),則PQ= ,然后根據(jù)三角形面積公式,利用S=SPAQ+SPCQ計(jì)算即可;
3)如圖2,當(dāng)點(diǎn)Mx的正半軸,ANBCF,作FHACH,根據(jù)角平分線的性質(zhì)得FH=FB,易得AH=AB=6,再利用∠ACB的余弦可求出CF=5,則F4,3),接著求出直線AF的解析式為y= x+1,于是通過(guò)解方程組N點(diǎn)坐標(biāo)為(

1)∵BCx軸,點(diǎn)C4,8),
B4,0),
B4,0),D0-6)代入y=,解得

∴拋物線解析式為

2)設(shè)直線AC的解析式為y=px+q
A-2,0),C4,8)代入得,解得

∴直線AC的解析式為

如圖1,作PQy軸交ACQ,

設(shè),則Q

3)圖2,當(dāng)點(diǎn)Mx的正半軸,ANBCF,作FHACH,則FH=FB,
易得AH=AB=6

F4,3),

易得直線AF的解析式為

解方程組

N點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD的邊BC的延長(zhǎng)線上取一點(diǎn)E,在直線BC的同側(cè)作一個(gè)以CE為底的等腰CEF,且滿足∠B+F180°,則稱三角形CEF為四邊形ABCD伴隨三角形

1)如圖1,若CEF是正方形ABCD伴隨三角

①連接AC,則∠ACF   ;

②若CE2BC,連接AECFH,求證:HCF的中點(diǎn);

2)如圖2,若CEF是菱形ABCD伴隨三角形,∠B60°,M是線段AE的中點(diǎn),連接DM、FM,猜想并證明DMFM的位置與數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°AB2,把菱形ABCDBC的中點(diǎn)E順時(shí)針旋轉(zhuǎn)60°得到菱形A'B'C'D',其中點(diǎn)D的運(yùn)動(dòng)路徑為,則圖中陰影部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了推進(jìn)球類運(yùn)動(dòng)的發(fā)展,某校組織校內(nèi)球類運(yùn)動(dòng)會(huì),分籃球、足球、排球、羽毛球、乒乓球五項(xiàng),要求每位學(xué)生必須參加一項(xiàng)并且只能參加一項(xiàng),某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖表中提供的信息,解答下列問(wèn)題:

(1)圖表中m=________,n=________;

(2)若該校學(xué)生共有1000人,則該校參加羽毛球活動(dòng)的人數(shù)約為________人;

(3)該班參加乒乓球活動(dòng)的4位同學(xué)中,有3位男同學(xué)(分別用A,B,C表示)和1位女同學(xué)(用D表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加雙打比賽,用樹狀圖或列表法求出恰好選出一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一組鄰邊相等的凸四邊形叫做“準(zhǔn)菱形”.利用該定義完成以下各題:

(1) 理解

填空:如圖1,在四邊形ABCD中,若     (填一種情況),則四邊形ABCD是“準(zhǔn)菱形”;

(2)應(yīng)用

證明:對(duì)角線相等且互相平分的“準(zhǔn)菱形”是正方形;(請(qǐng)畫出圖形,寫出已知,求證并證明)

(3) 拓展

如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準(zhǔn)菱形”,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為.

1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線,它與軸和軸的正半軸分別交于點(diǎn)和點(diǎn),且關(guān)于直線對(duì)稱.(作圖不必寫作法,但要保留作圖痕跡.

2)請(qǐng)求出(1)中作出的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)【問(wèn)題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的任意兩點(diǎn)M,N,給出如下定義:點(diǎn)M與點(diǎn)N的“折線距離”為:

例如:若點(diǎn)M(-1,1),點(diǎn)N(2,-2),則點(diǎn)M與點(diǎn)N的“折線距離”為:.根據(jù)以上定義,解決下列問(wèn)題:

1)已知點(diǎn)P(3,-2).

①若點(diǎn)A(-2,-1),則d(P,A)=

②若點(diǎn)B(b,2),且d(P,B)=5,則b= ;

③已知點(diǎn)Cm,n)是直線上的一個(gè)動(dòng)點(diǎn),且d(P,C)<3,求m的取值范圍.

2)⊙F的半徑為1,圓心F的坐標(biāo)為(0,t),若⊙F上存在點(diǎn)E,使d(E,O)=2,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你估計(jì)總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),請(qǐng)用列舉法(畫樹狀圖或列表)求抽取出的2個(gè)家庭來(lái)自不同范圍的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案