如圖1,在平面直角坐標系中,以坐標原點O為圓心的⊙O的半徑為,直線與坐標軸分別交于A、C兩點,點B的坐標為(4,1),⊙B與x軸相切于點M。
(1)求點A的坐標及∠CAO的度數(shù);
(2)⊙B以每秒1個單位長度的速度沿x軸負方向平移,同時,若直線繞點A順時針勻速旋轉(zhuǎn),當⊙B第一次與⊙O相切時,直線也恰好與⊙B第一次相切,見圖(2)求B1的坐標以及直線AC繞點A每秒旋轉(zhuǎn)多少度?
(3)若直線不動,⊙B沿x軸負方向平移過程中,能否與⊙O與直線同時相切。若相切,說明理由。
.解: (1)A(,0)
∵ C(0,). ∴ OA=OC
∵ OA⊥OC, ∴∠CAO=45°
(2) 如圖,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,此時,直線l旋轉(zhuǎn)到l1恰好與⊙B1 第一次相切于點P,⊙B1與x軸相切于點N,連接B1O,B1N.
則MN=t,O B1= , B1N=1,B1N⊥AN.
∴ON=1,∴MN=3,即t=3
連接B1A,B1P,則B1P⊥AP,B1P= B1N,∴∠PA B1=∠NA B1.
∵OA=O B1=,∴∠A B1O=∠NA B1. ∴∠PA B1=∠A B1O. ∴PA∥B1O.
在Rt△NO B1中,∠B1ON=45° ∴∠PAN=45° ∴∠1=90°.
∴直線AC繞點A平均每秒旋轉(zhuǎn)30°
(3) 能,設(shè)⊙B與⊙O第二次相切時⊙B的圓心為B2,作B2E⊥AC于E,
作OH⊥AC于H,則四邊形B2EHO為平行四邊形,則B2E=OH=1,故此時⊙B與直線同時相切
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.
(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對稱問題時發(fā)現(xiàn):
如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.
如圖2,當點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.
(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;
(2)如圖3,在平面直角坐標系xOy中,當、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com