【題目】(建立概念)如下圖,A、B為數(shù)軸上不重合的兩定點,點P也在該數(shù)軸上,我們比較線段的長度,將較短線段的長度定義為點P到線段靠近距離”.特別地,若線段的長度相等,則將線段的長度定義為點P到線段靠近距離”.

(概念理解)如下圖,數(shù)軸的原點為O,點A表示的數(shù)為,點B表示的數(shù)為4.

1)點O到線段靠近距離________;

2)點P表示的數(shù)為m,若點P到線段靠近距離3,則m的值為_________

(拓展應用)(3)如下圖,在數(shù)軸上,點P表示的數(shù)為,點A表示的數(shù)為,點B表示的數(shù)為6. P以每秒2個單位長度的速度向正半軸方向移動時,點B同時以每秒1個單位長度的速度向負半軸方向移動.設移動的時間為秒,當點P到線段靠近距離3時,求t的值.

【答案】12;(2517;(3

【解析】

1)根據(jù)題意OA的長度即為所求;(2)分三種情況進行討論,①當點P位于A點左側;②點P位于線段AB上;③點P位于B點右側,分別求解;(3)分情況討論,當PA=3PB=3時,分別求解.

解:(1)由題意OA=2;OB=4

∴點O到線段靠近距離2

故答案為:2;

2)①當點P位于A點左側時,點P表示-2-3=-5;

②點P位于線段AB上時,點P表示-2+3=1,此時PA=PB=1

③點P位于B點右側時,點P表示4+3=7

m=517

故答案為:517

3PA=3時, 可得,或

解得.

而當時,PB=14-4×3=2,<,點P到線段AB靠近距離2,不符合題意.

所以.

PB=3時, 可得,或,

解得.

而當時,PA=,PA<PB,點P到線段AB靠近距離,不符合題意.

所以.

綜上所述,所以.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

(1)求證:拋物線與軸必定有公共點;

(2)P(,y1),Q(-2,y2)是拋物線上的兩點,且y1y2,求的取值范圍;

(3)設拋物線x軸交于點、A在點B的左側,y軸負半軸交于點C,,若點D是直線BC下方拋物線上一點,連接ADBC于點E,記△ACE的面積為S1,△DCE的面積為S2是否有最值?若有,求出該最值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在正方形 ABCD 中,對角線 AC, BD 交于點 O ,點 E AB 上,點 F BC 的延長線上,且 AE CF .連接 EF AC 于點 P, 分別連接 DE, DF .

1)求證: ADE CDF ;

2)求證: PE PF ;

3)如圖 2,若 PE BE, 的值是 .(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,表中給出的是某月的月歷,任意選取“H”型框中的7個數(shù)(如陰影部分所示),請你運用所學的數(shù)學知識來研究,發(fā)現(xiàn)這7個數(shù)的和不可能的是()

A.63B.70C.92D.105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,AD = 6,AB = ,A = 45°過點B、D分別做BEAD,DFBC,交AD、BC與點E、F.點QDF邊上一點,∠DEQ = 30°,點PEQ的中點,過點P作直線分別與AD、BC相交于點MN.若MN = EQ,則EM的長等于___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖的轉盤被劃分成六個相同大小的扇形,并分別標上1,23,45,6這六個數(shù)字,指針停在每個扇形的可能性相等。四位同學各自發(fā)表了下述見解:

甲:如果指針前三次都停在了3號扇形,下次就一定不會停在3號扇形;

乙:只要指針連續(xù)轉六次,一定會有一次停在6號扇形;

丙:指針停在奇數(shù)號扇形的概率與停在偶數(shù)號扇形的概率相等;

。哼\氣好的時候,只要在轉動前默默想好讓指針停在6號扇形,指針停在6號扇形的可能性就會加大。

其中,你認為正確的見解有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學對本校500名畢業(yè)生中考體育加試測試情況進行調查,根據(jù)男生1 000m及女生800m測試成績整理、繪制成如下不完整的統(tǒng)計圖(圖①、圖②),請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:

(1)該校畢業(yè)生中男生有________人,女生有________人;

(2)扇形統(tǒng)計圖中a=________,b=________;

(3)補全條形統(tǒng)計圖(不必寫出計算過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

20筐白菜中,最重的一筐比最輕的一筐多重多少千克?

⑵與標準重量比較,20筐白菜總計超過或不足多少千克?

⑶若白菜每千克售價1.6元,則出售這20筐白菜可賣多少元?(結果保留整數(shù))

查看答案和解析>>

同步練習冊答案