【題目】家家樂超市購進一批面粉,標準質(zhì)量為50千克,現(xiàn)抽取20袋面粉進行稱重檢測,為記錄的方便用,表示超過標準的重量,用表示不足標準的重量,結(jié)果如下表(單位:千克)

與標準差(千克)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

袋數(shù)

3

2

3

4

1

2

1

4

(1)求這20袋面粉超出或不足的質(zhì)量為多少?

(2)20袋面粉平均每袋多少千克?

【答案】1)不足,4千克;(249.8

【解析】

1)結(jié)合表格根據(jù)標準差與代數(shù)然后相加即可得出20袋面粉超出或不足的質(zhì)量;

2)每袋面粉的標準質(zhì)量加上20袋面粉平均每袋超出或不足的質(zhì)量即可得出答案.

解:(1(千克)

答:這20袋面粉不足的質(zhì)量為4千克;

2(千克)

答:這20袋面粉平均每袋49.8千克.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為進一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.

(1)學生小紅計劃選修兩門課程,請寫出所有可能的選法;

(2)若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明做了一個數(shù)學實驗:將一個圓柱形的空玻璃杯放入形狀相同的無水魚缸內(nèi),然后,小明對準玻璃杯口勻速注水,如圖所示,在注水過程中,杯底始終緊貼魚缸底部,則下面可以近似地刻畫出無魚水缸內(nèi)最高水位與注水時間之間的變化情況的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,,點DAB的中點.如果點P在線段BC上以2cm/s的速度由點BC點運動,同時,點Q在線段AC上由點AC點以4cm/s的速度運動.

1)若點P、Q兩點分別從B、A兩點同時出發(fā),經(jīng)過2秒后,是否全等?請說明理由;

2)若點P、Q兩點分別從B、A兩點同時出發(fā),的周長為16cm,設(shè)運動時間為t,問:當t為何值時,是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點O(00),B(12)

1)若點Ay軸上,且三角形AOB的面積為2,求點A的坐標;

2)若點C的坐標為(30),BDOC,且BDOC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一條不完整的數(shù)軸上從左到右有三個點,其中點到點的距離為3,點的距離為4設(shè)點所對應的數(shù)的和是

(1)若以為原點,寫出點所對應的數(shù),并計算的值;若以為原點,求的值;

(2)若原點在圖中數(shù)軸上點的左側(cè),且點到原點的距離為1,求的值;

(3)若原點在圖中數(shù)軸上點的右側(cè),且點到點的距離為,求的值(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等角轉(zhuǎn)化;如圖1,已知點ABC外一點,連結(jié)AB、AC,求∠BAC+B+C的度數(shù).

1)閱讀并補充下面的推理過程

解:過點AEDBC,

∴∠B=∠EAB,∠C      

又∵∠EAB+BAC+DAC180°

∴∠B+BAC+C180°

從上面的推理過程中,我們發(fā)現(xiàn)平行線具有等角轉(zhuǎn)化的功能,將∠BAC、∠B、∠C在一起,得出角之間的關(guān)系,使問題得以解決.

2)如圖2,已知ABED,求∠B+BCD+D的度數(shù)(提示:過點CCFAB);

3)如圖3,已知ABCD,點C在點D的右側(cè),∠ADC80°,點B在點A的左側(cè),∠ABC60°,BE平分∠ABCDE平分∠ADC,BE、DE所在的直線交于點E,點E在兩條平行線ABCD之間,求∠BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列命題:①相等的角是對頂角;②互補的角就是平角;③互補的兩個角一定是一個銳角,另一個為鈍角:④平行于同一條直線的兩直線平行;⑤兩條平行線被第三條直線所截,同旁內(nèi)角的角平分線互相垂直.其中,正確命題的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,A、CF、D在同一直線上,AFDCABDE,ABDE.

求證:(1) △ABC≌△DEF;

(2)BCEF.

查看答案和解析>>

同步練習冊答案