【題目】如圖,直線y= x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段AB、OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為( )

A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)

【答案】C
【解析】解:(方法一)作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.

令y= x+4中x=0,則y=4,
∴點B的坐標(biāo)為(0,4);
令y= x+4中y=0,則 x+4=0,解得:x=﹣6,
∴點A的坐標(biāo)為(﹣6,0).
∵點C、D分別為線段AB、OB的中點,
∴點C(﹣3,2),點D(0,2).
∵點D′和點D關(guān)于x軸對稱,
∴點D′的坐標(biāo)為(0,﹣2).
設(shè)直線CD′的解析式為y=kx+b,
∵直線CD′過點C(﹣3,2),D′(0,﹣2),
∴有 ,解得: ,
∴直線CD′的解析式為y=﹣ x﹣2.
令y=﹣ x﹣2中y=0,則0=﹣ x﹣2,解得:x=﹣
∴點P的坐標(biāo)為(﹣ ,0).
故選C.
(方法二)連接CD,作點D關(guān)于x軸的對稱點D′,連接CD′交x軸于點P,此時PC+PD值最小,如圖所示.
令y= x+4中x=0,則y=4,
∴點B的坐標(biāo)為(0,4);
令y= x+4中y=0,則 x+4=0,解得:x=﹣6,
∴點A的坐標(biāo)為(﹣6,0).
∵點C、D分別為線段AB、OB的中點,
∴點C(﹣3,2),點D(0,2),CD∥x軸,
∵點D′和點D關(guān)于x軸對稱,
∴點D′的坐標(biāo)為(0,﹣2),點O為線段DD′的中點.
又∵OP∥CD,
∴點P為線段CD′的中點,
∴點P的坐標(biāo)為(﹣ ,0).
故選C.

(方法一)根據(jù)一次函數(shù)解析式求出點A、B的坐標(biāo),再由中點坐標(biāo)公式求出點C、D的坐標(biāo),根據(jù)對稱的性質(zhì)找出點D′的坐標(biāo),結(jié)合點C、D′的坐標(biāo)求出直線CD′的解析式,令y=0即可求出x的值,從而得出點P的坐標(biāo).
(方法二)根據(jù)一次函數(shù)解析式求出點A、B的坐標(biāo),再由中點坐標(biāo)公式求出點C、D的坐標(biāo),根據(jù)對稱的性質(zhì)找出點D′的坐標(biāo),根據(jù)三角形中位線定理即可得出點P為線段CD′的中點,由此即可得出點P的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AD,AC=AE,∠1=2

1)求證:△ABC≌△ADE;

2)找出圖中與∠1、∠2相等的角(直接寫出結(jié)論,不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,點A18),B1,6),C7,6).

(1)請直接寫出點D的坐標(biāo);

(2)連接線段OB,OD,BD,請求出△OBD的面積;

(3)若長方形ABCD以每秒1個單位長度的速度向下運動,設(shè)運動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=ACAC上的中線BD把三角形的周長分為24㎝和30㎝的兩個部分,求三角形的三邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(﹣1,y1),(4,y2)在一次函數(shù)y=3x﹣2的圖象上,則y1 , y2 , 0的大小關(guān)系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一根長米的木棒(AB),斜靠在與地面(OM)垂直的墻(ON)上,與地面的傾斜角(∠ABO)為60°.當(dāng)木棒A端沿墻下滑至點A′時,B端沿地面向右滑行至點B′

1)求OB的長;

2)當(dāng)AA′=1米時,求BB′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1 , y1),P2(x2 , y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:P1P2= 他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標(biāo)公式:x= ,y=

(1)請你幫小明寫出中點坐標(biāo)公式的證明過程;
(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為
②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標(biāo):;
(3)如圖3,點P(2,n)在函數(shù)y= x(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=ACD,E是斜邊BC上兩點,且∠DAE=45°,將△ABE繞點A順時針旋轉(zhuǎn)90°后,得到△ACF,連接DF,則下列結(jié)論中有( )個是正確的。

①∠DAF=45° ②△ABE≌△ACD ③AD平分∠EDF ④

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MON=51°,點P在∠MON的內(nèi)部,點D是邊ON上任意一點,點C是邊OM上任意一點,連接PD、PC,當(dāng)PCD的周長最小時,∠CPD的度數(shù)為_______

查看答案和解析>>

同步練習(xí)冊答案