【題目】如圖是拋物線y=ax2+bx+ca≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論:①ab+c0;②3a+b=0;③b2=4acn);④一元二次方程ax2+bx+c=n1有兩個(gè)不相等的實(shí)數(shù)根.其中正確結(jié)論的是______________(只填序號(hào))

【答案】①③④

【解析】

利用拋物線的對(duì)稱性得到拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(-2,0)和(-10)之間,則當(dāng)x=-1時(shí),y0,于是可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱軸為直線x=- =1,即b=-2a,則可對(duì)②進(jìn)行判斷;利用拋物線的頂點(diǎn)的縱坐標(biāo)為n得到=n,則可對(duì)③進(jìn)行判斷;由于拋物線與直線y=n有一個(gè)公共點(diǎn),則拋物線與直線y=n-12個(gè)公共點(diǎn),于是可對(duì)④進(jìn)行判斷.

解:∵拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(40)之間,而拋物線的對(duì)稱軸為直線x=1
∴拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(-2,0)和(-1,0)之間.
∴當(dāng)x=-1時(shí),y0
a-b+c0,所以①正確;
∵拋物線的對(duì)稱軸為直線x=-=1,即b=-2a,
3a+b=3a-2a=a,所以②錯(cuò)誤;
∵拋物線的頂點(diǎn)坐標(biāo)為(1,n),
=n,
b2=4ac-4an=4ac-n),所以③正確;
∵拋物線與直線y=n有一個(gè)公共點(diǎn),
∴拋物線與直線y=n-12個(gè)公共點(diǎn),
∴一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根,所以④正確.

故答案為:①③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠疫情影響,全國(guó)中小學(xué)延遲開學(xué),很多學(xué)校都開展起了線上教學(xué),市場(chǎng)上對(duì)手寫板的需求激增.重慶某廠家準(zhǔn)備3月份緊急生產(chǎn)AB兩種型號(hào)的手寫板,若生產(chǎn)20個(gè)A型號(hào)和30個(gè)B型號(hào)手寫板,共需要投入36000元;若生產(chǎn)30個(gè)A型號(hào)和20個(gè)B型號(hào)手寫板,共需要投入34000元.

1)請(qǐng)問生產(chǎn)A,B兩種型號(hào)手寫板,每個(gè)各需要投入多少元的成本?

2)經(jīng)測(cè)算,生產(chǎn)的A型號(hào)手寫板每個(gè)可獲利200元,B型號(hào)手寫板每個(gè)可獲利400元,該廠家準(zhǔn)備用10萬(wàn)元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設(shè)生產(chǎn)了A型號(hào)手寫板a個(gè),求w關(guān)于a的函數(shù)關(guān)系式;

3)在(2)的條件下,若要求生產(chǎn)A型號(hào)手寫板的數(shù)量不能少于B型號(hào)手寫板數(shù)量的2倍,請(qǐng)你設(shè)計(jì)出總獲利最大的生產(chǎn)方案,并求出最大總獲利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某班甲、乙、丙三位同學(xué)最近5次數(shù)學(xué)成績(jī)及其所在班級(jí)相應(yīng)平均分的折線統(tǒng)計(jì)圖,則下列判斷錯(cuò)誤的是( ).

A. 甲的數(shù)學(xué)成績(jī)高于班級(jí)平均分,且成績(jī)比較穩(wěn)定

B. 乙的數(shù)學(xué)成績(jī)?cè)诎嗉?jí)平均分附近波動(dòng),且比丙好

C. 丙的數(shù)學(xué)成績(jī)低于班級(jí)平均分,但成績(jī)逐次提高

D. 就甲、乙、丙三個(gè)人而言,乙的數(shù)學(xué)成績(jī)最不穩(wěn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AD是△ABC的中線P是線段AD上的一點(diǎn)(不與點(diǎn)A、D重合),連接PB、PCE、FG、H分別是ABAC、PBPC的中點(diǎn),ADEF交于點(diǎn)M;

1)如圖1,當(dāng)ABAC時(shí),求證:四邊形EGHF是矩形;

2)如圖2,當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),在不添加任何輔助線的條件下,寫出所有與△BPE面積相等的三角形(不包括△BPE本身).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某環(huán)衛(wèi)公司承包了市區(qū)兩個(gè)片區(qū)道路的清掃任務(wù),需要購(gòu)買某廠家A,B兩種型號(hào)的馬路清掃車,購(gòu)買5A型馬路清掃車和6B型馬路清掃車共需171萬(wàn)元;購(gòu)買3A型馬路清掃車和12B型馬路清掃車共需237萬(wàn)元.

1)求這兩種馬路清掃車的單價(jià);

2)恰逢該廠舉行30周年慶,決定對(duì)這兩種馬路清掃車開展促銷活動(dòng),具體方案如下:購(gòu)買A型馬路清掃車按原價(jià)的八折銷售,購(gòu)買B型馬上清掃車不超過10輛時(shí)按原價(jià)銷售,超過10輛的部分按原價(jià)的七折銷售.設(shè)購(gòu)買xA種馬路清掃車需要y1元,購(gòu)買xx0)個(gè)B型馬路清掃車需要y2元,分別求出y1,y2關(guān)于x的函數(shù)關(guān)系式;

3)若該公司承包的道路清掃面積為118000m2,每輛A型馬路清掃車每天清掃5000m2,每輛B型馬路清掃車每天清掃6000m2,公司準(zhǔn)備購(gòu)買20輛馬路清掃車,且B型馬路清掃車的數(shù)量大于10.請(qǐng)你幫該公司設(shè)計(jì)出最省錢的購(gòu)買方案.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙OBC于點(diǎn)D,交AB于點(diǎn)E,過點(diǎn)DDF⊥AB,垂足為F,連接DE

1)求證:直線DF⊙O相切;

2)若AE=7,BC=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小雪和小松分別從家和圖書館出發(fā),沿同一條筆直的馬路相向而行.小雪開始跑步,中途在某地改為步行,且步行的速度為跑步速度的一半,小雪先出發(fā)5分鐘后,小松才騎自行車勻速回家.小雪到達(dá)圖書館恰好用了35分鐘.兩人之間的距離ym)與小雪離開出發(fā)地的時(shí)間xmin)之間的函數(shù)圖象如圖所示,則當(dāng)小松剛到家時(shí),小雪離圖書館的距離為____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點(diǎn)E,O,F分別是邊ABAC,AD的中點(diǎn),連接CE、CFOE、OF

1)求證:△BCE≌△DCF;

2)當(dāng)ABBC滿足什么條件時(shí),四邊形AEOF正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2bxc的圖象過點(diǎn)(1,0)和點(diǎn)(3,0),有下列說法:①bc0;②abc0;③2ab0;④4acb2.其中錯(cuò)誤的是(  )

A.②④B.①③④C.①②④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案