5、以等腰直角△ABC的斜邊AB所在的直線為對稱軸,作這個△ABC的對稱圖形△ABC′,則所得到的四邊形ACBC′一定是
正方形
分析:由題意易得,所得四邊形ACBC′的四個角都是直角,又有兩直角邊相等,可得所得四邊形是正方形.
解答:解:
∵△ABC是等腰直角三角形,
∴AC=BC,∠CAB=∠CBA=45°,∠C=90°,
∵△ABC和△ABC′是關(guān)于AB軸對稱,
∴∠C′AB=∠C′BA=45°,∠C′=90°,
∴∠CAC′=∠CBC′=90°,
∴四邊形ACBC′是矩形(三個角都是直角的四邊形是矩形),
又∵AC=BC,
∴四邊形ACBC′是正方形(有一組鄰邊相等的矩形是正方形).
故答案為:正方形.
點評:此題主要考查軸對稱的性質(zhì)和正方形的判定,要靈活掌握,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、(1)如圖1,以等腰直角△ABC的直角邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,則DE與AM之間的數(shù)量關(guān)系為
DE=2AM
;
(2)如圖2,以任意直角△ABC的直角邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,則DE與AM之間的數(shù)量關(guān)系為
DE=2AM
;
(3)如圖3,以任意非直角△ABC的邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,試判斷DE與AM之間的數(shù)量關(guān)系,并說明理由;
(4)如圖4,若以△ABC的邊AB、AC為直角邊,向內(nèi)作等腰直角△ABE和△ACD,其它條件不變,請直接寫出線段DE與AM之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北師大版初中數(shù)學(xué)八年級上3.6簡單的圖案設(shè)計練習(xí)卷(解析版) 題型:填空題

以等腰直角△ABC的斜邊AB所在的直線為對稱軸,作這個△ABC的對稱圖形△,則所得到的四邊形ACBC′一定是_______.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖1,以等腰直角△ABC的直角邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,則DE與AM之間的數(shù)量關(guān)系為______;
(2)如圖2,以任意直角△ABC的直角邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,則DE與AM之間的數(shù)量關(guān)系為______;
(3)如圖3,以任意非直角△ABC的邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,試判斷DE與AM之間的數(shù)量關(guān)系,并說明理由;
(4)如圖4,若以△ABC的邊AB、AC為直角邊,向內(nèi)作等腰直角△ABE和△ACD,其它條件不變,請直接寫出線段DE與AM之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省唐山市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•唐山一模)(1)如圖1,以等腰直角△ABC的直角邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,則DE與AM之間的數(shù)量關(guān)系為______;
(2)如圖2,以任意直角△ABC的直角邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,則DE與AM之間的數(shù)量關(guān)系為______;
(3)如圖3,以任意非直角△ABC的邊AB、AC為直角邊向外作等腰直角△ABE和△ACD,M是BC的中點,試判斷DE與AM之間的數(shù)量關(guān)系,并說明理由;
(4)如圖4,若以△ABC的邊AB、AC為直角邊,向內(nèi)作等腰直角△ABE和△ACD,其它條件不變,請直接寫出線段DE與AM之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案