【題目】如圖,正方形ABCD的邊長為,對角線AC和BD交于點(diǎn)E,點(diǎn)F是BC邊上一動點(diǎn)(不與點(diǎn)B,C重合),過點(diǎn)E作EF的垂線交CD于點(diǎn)G,連接FG交EC于點(diǎn)H.設(shè)BF=x,CH=y,則y與x的函數(shù)關(guān)系的圖象大致是( 。
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,A(﹣3,0),B(0,1),形狀相同的拋物線Cn(n=1,2,3,4,…)的頂點(diǎn)在直線AB上,其對稱軸與x軸的交點(diǎn)的橫坐標(biāo)依次為2,3,5,8,13,…,根據(jù)上述規(guī)律,拋物線C2的頂點(diǎn)坐標(biāo)為_____;拋物線C8的頂點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為D,E,AD與BE相交于點(diǎn)F.
(1)求證:△ACD∽△BFD;
(2)當(dāng)tan∠ABD=1,AC=3時,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動.設(shè)運(yùn)動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將三角尺的直角頂點(diǎn)放在直尺的一邊上,∠1=30°,
(1)作出△APC的PC邊上的高;
(2)若∠2=51°,求∠3;
(3)若直尺上點(diǎn)P處刻度為2,點(diǎn)C處為8,點(diǎn)M處為3,點(diǎn)N處為7,求S△BMN:S△BPC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為6的正方形ABCD中,點(diǎn)E是射線BC上的動點(diǎn)(不與B,C重合),連結(jié)AE,將△ABE沿AE向右翻折得△AFE,連結(jié)CF和DF,若△DFC為等腰三角形,則BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)B在y軸上,若反比例函數(shù)(k≠0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是的直徑,PA與⊙O 相切于點(diǎn)A,點(diǎn)C在⊙O 上,且PC=PA,
(1)求證PC是⊙O的切線;
(2)過點(diǎn)C作CD⊥AB于點(diǎn)E,交⊙O于點(diǎn)D,若CD=PA=2,
①求圖中陰影部分面積;
②連接AC,若△PAC的內(nèi)切圓圓心為I,則線段IE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形的中心在原點(diǎn)O,且正方形的一組對邊與x軸平行,點(diǎn)P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點(diǎn).若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為 ▲ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com