【題目】如圖,將三角尺的直角頂點(diǎn)放在直尺的一邊上,∠1=30°,
(1)作出△APC的PC邊上的高;
(2)若∠2=51°,求∠3;
(3)若直尺上點(diǎn)P處刻度為2,點(diǎn)C處為8,點(diǎn)M處為3,點(diǎn)N處為7,求S△BMN:S△BPC的值.
【答案】(1)詳見解析;(2)21°;(3)
【解析】
(1)根據(jù)過直線外一點(diǎn)作該直線的垂線的作圖方法,即可作出PC邊上的高;
(2)由題意得:DG∥EF,推出∠APD=∠2=51°,再由∠1=30°,根據(jù)外角的性質(zhì),即可推出∠3的度數(shù);
(3)由題意推出MN、PC的長(zhǎng)度,再根據(jù)平行線的性質(zhì),推出△BMN與△BPC相似,然后根據(jù)相似三角形的面積比等于相似比的平方,即可推出S△BMN:S△BPC的值.
(1)作法:①以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧,設(shè)弧與直線PC交于點(diǎn)I、G,
②分別以點(diǎn)I、G為圓心大于IG為半徑作弧,設(shè)兩弧交于點(diǎn)R,
③連接AR,設(shè)AR與直線PC交于點(diǎn)H,
④則AH為所求作的PC邊上的高,
(2)∵將三角尺的直角頂點(diǎn)放在直尺的一邊上,
∴DG∥EF,
∴∠APD=∠2,
∵∠2=51°,
∴∠APD=51°,
∵∠1=30°,
∴∠3=∠APD﹣∠1=51°﹣30°=21°,
(3)∵EF∥DG,
∴△BMN∽△BPC,
∵直尺上點(diǎn)P處刻度為2,點(diǎn)C處為8,點(diǎn)M處為3,點(diǎn)N處為7,
∴MN=7﹣3=4,PC=8﹣2=6,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD切⊙O于點(diǎn)D,AC⊥CD于點(diǎn)C,交⊙O于點(diǎn)E,連接AD、BD、ED.
(1)求證:BD=ED;
(2)若CE=3,CD=4,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法正確的有( 。
①正八邊形的每個(gè)內(nèi)角都是135°
②與是同類二次根式
③長(zhǎng)度等于半徑的弦所對(duì)的圓周角為30°
④反比例函數(shù)y=﹣,當(dāng)x<0時(shí),y隨x的增大而增大.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線型拱橋,P處有一照明燈,水面OA寬4 m,從O,A兩處觀測(cè)P處,仰角分別為α,β,且tan α=,tan β=,以O為原點(diǎn),OA所在直線為x軸建立平面直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo).
(2)水面上升1 m,水面寬多少?(結(jié)果精確到0.1 m.參考數(shù)據(jù): ≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給定關(guān)于的二次函數(shù) ,
學(xué)生甲:當(dāng)時(shí),拋物線與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線與軸只有一個(gè)交點(diǎn)時(shí),的值為3;
學(xué)生乙:如果拋物線在軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;
請(qǐng)判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為,對(duì)角線AC和BD交于點(diǎn)E,點(diǎn)F是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),過點(diǎn)E作EF的垂線交CD于點(diǎn)G,連接FG交EC于點(diǎn)H.設(shè)BF=x,CH=y,則y與x的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某專賣店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋,其進(jìn)價(jià)和售價(jià)如下表所示。已知用3000元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用2400元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.
運(yùn)動(dòng)鞋價(jià)格 | 甲 | 乙 |
進(jìn)價(jià)元/雙) | m | m-30 |
售價(jià)(元/雙) | 300 | 200 |
(1)求m的值;
(2)要使購(gòu)進(jìn)的甲,乙兩種運(yùn)動(dòng)鞋共200雙的總利潤(rùn)不少于21700元且不超過22300元,問該專賣店有幾種進(jìn)貨方案?
(3)在(2)的條件下,專賣店決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠a(60<a<80)元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變,那么該專賣店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,分別以ACBC為底邊,向△ABC外部作等腰△ADC和△CEB,點(diǎn)M為AB中點(diǎn),連接MDME分別與ACBC交于點(diǎn)F和點(diǎn)G.
求證四邊形MFCG是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生對(duì)四大古典名著(《西游記》《三國(guó)演義》《水滸傳》《紅樓夢(mèng)》)的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中進(jìn)行了抽樣調(diào)查.根據(jù)調(diào)查結(jié)果繪制成如所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查一共抽取了_____名學(xué)生,扇形統(tǒng)計(jì)圖中“4部”所在扇形的圓心角為____度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)至少閱讀1部四大古典名著的學(xué)生有多少名?
(3)沒有讀過四大名著的兩名學(xué)生準(zhǔn)備從四大古典名著中各自隨機(jī)選擇一部來閱讀,請(qǐng)用列表法或樹狀圖求他們選中同一名著的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com