【題目】1)如圖1求證:

1

2)如圖2是等邊三角形,為三角形外一點(diǎn),,求證:

2

【答案】1)見(jiàn)解析(2)見(jiàn)解析

【解析】

1)根據(jù)題意證明△ABE≌△ADC即可求解;

2)延長(zhǎng)CPB,使PB=PA,連接AB,證△APB為等邊三角形得AP=PB=AB,再證△△BAC≌△PAEEP=BC,可得.

1

,

△ABE≌△ADC

(2)如圖,延長(zhǎng)CPB,使PB=PA,連接AB,

∴∠APB=60,又PB=PA,

∴△APB為等邊三角形,

AP=PB=AB,BAP=60,

是等邊三角形,

AC=AE,EAC=60

∴∠BAP =EAC,

∴∠BAP +PAC=EAC +PAC,

即:∠BAC=PAE

在△BAC和△PAE中,

∴△BAC≌△PAE (SAS),

BC=PE

BC=BP+PC=AP+ PC,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EDC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF,連接EF.若∠EFD=15°,則∠CDF的度數(shù)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)香洲區(qū)全面推進(jìn)書(shū)香校園建設(shè)的號(hào)召,班長(zhǎng)小青隨機(jī)調(diào)查了若干同學(xué)一周課外閱讀的時(shí)間t(單位:小時(shí)),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0t7,B:7t14,C:14t21,D:t21),根據(jù)圖中信息,解答下列問(wèn)題:

(1)這項(xiàng)工作中被調(diào)查的總?cè)藬?shù)是多少?

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù);

(3)如果小青想從D組的甲、乙、丙、丁四人中先后隨機(jī)選擇兩人做讀書(shū)心得發(fā)言代表,請(qǐng)用列表或樹(shù)狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)展了手機(jī)伴我健康行主題活動(dòng).他們隨機(jī)抽取部分學(xué)生進(jìn)行手機(jī)使用目的每周使用手機(jī)時(shí)間的問(wèn)卷調(diào)查,并繪制成如圖的統(tǒng)計(jì)圖。已知查資料人人數(shù)是40人。

請(qǐng)你根據(jù)以上信息解答以下問(wèn)題

1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的圓心角度數(shù)是_______________。

2)補(bǔ)全條形統(tǒng)計(jì)圖

3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角中,,的中點(diǎn),,上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yx的反比例函數(shù),且當(dāng)x2時(shí),y=﹣3,

1)求yx之間的函數(shù)關(guān)系式;

2)畫(huà)出這個(gè)函數(shù)的圖象;

3)試判斷點(diǎn)P(﹣23)是否在這個(gè)函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:CD為一幢3米高的溫室,其南面窗戶的底框G距地面1米,CD在地面上留下的最大影長(zhǎng)CF2米,現(xiàn)欲在距C點(diǎn)7米的正南方A點(diǎn)處建一幢12米高的樓房AB(設(shè)A,C,F(xiàn)在同一水平線上).

(1)按比例較精確地作出高樓AB及它的最大影長(zhǎng)AE;

(2)問(wèn)若大樓AB建成后是否影響溫室CD的采光,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點(diǎn)D,AE∥BDCB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )

A. 40° B. 45° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)Pa,b),若點(diǎn)P1的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點(diǎn)P1為點(diǎn)P“k屬派生點(diǎn)

例如,P14)的“2屬派生點(diǎn)P11+2×4,2×1+4),即P19,6).

1)點(diǎn)(﹣2,3)的“3屬派生點(diǎn)”P1的坐標(biāo)為   (直接填空)

2)若點(diǎn)P“5屬派生點(diǎn)”P1的坐標(biāo)為(3,﹣9),則點(diǎn)P坐標(biāo)為   (直接填空);

3)若x軸正半軸上一點(diǎn)Pa,0)的“k屬派生點(diǎn)P1,且線段PP1的長(zhǎng)度為線段OP長(zhǎng)度的2倍,則k   (直接填空);

4)在(3)的條件下,若點(diǎn)My軸上,連接MP、MP1,使MP1平分∠PMO,請(qǐng)直接寫(xiě)出點(diǎn)M的縱坐標(biāo)(用含a的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案