(2013•海陵區(qū)模擬)下列命題:
①等弧所對(duì)的圓周角相等;
②對(duì)角線相等且垂直的四邊形是正方形;
③正六邊形的對(duì)稱軸有6條;
④對(duì)角線相等的梯形是等腰梯形.
其中正確的個(gè)數(shù)是( 。
分析:根據(jù)圓的性質(zhì),正方形的判定,正六邊形的對(duì)稱性,等腰梯形的判定對(duì)各小題分析判斷即可得解.
解答:解:①等弧所對(duì)的圓周角相等,故本小題正確;
②對(duì)角線相等且垂直平分的四邊形是正方形故本小題錯(cuò)誤;
③正六邊形的對(duì)稱軸有6條,故本小題正確;
④對(duì)角線相等的梯形是等腰梯形,故本小題正確;
綜上所述,正確的命題是①③④共3個(gè).
故選C.
點(diǎn)評(píng):本題主要考查命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海陵區(qū)模擬)已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=8,AB=12,BC=13,E為CD上一點(diǎn),BE=13,則S△ADE:S△BEC是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海陵區(qū)模擬)我市去年約有9700人參加中考,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為
9.7×103
9.7×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海陵區(qū)模擬)解答下列各題
(1)計(jì)算:|
3
-3|+(π-3)0+tan60°

(2)解不等式組:
5x>2x-6
x-4
5
x-1
4
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海陵區(qū)模擬)如圖是泰州鳳城河邊的“望海樓”,小明學(xué)習(xí)測(cè)量物體高度后,利用星期天測(cè)量了望海樓AB的高度,小明首先在一空地上用高度為1.5米的測(cè)角儀CD豎直放置地面,測(cè)得點(diǎn)A的仰角為30°,沿著DB方向前進(jìn)DE=24米,然后登上EF=2米高的平臺(tái),又前進(jìn)FG=2米到點(diǎn)G,再用1.5米高的測(cè)角儀測(cè)得點(diǎn)A的仰角為45°,圖中所有點(diǎn)均在同一平面,F(xiàn)G∥DB,CD∥FE∥AB∥GH.
(1)求點(diǎn)H到地面BD的距離;
(2)試求望海樓AB的高度約為多少米?(
3
≈1.73
,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海陵區(qū)模擬)已知直線y=-
3
4
x+6
與x軸交于點(diǎn)B,與y軸交于點(diǎn)A.
(1)⊙P經(jīng)過點(diǎn)O、A、B,試求點(diǎn)P的坐標(biāo);
(2)如圖2,點(diǎn)Q為線段AB上一點(diǎn),QM⊥OA、QN⊥OB,連結(jié)MN,試求△MON面積的最大值;
(3)在∠OAB內(nèi)是否存在點(diǎn)E,使得點(diǎn)E到射線AO和AB的距離相等,且這個(gè)距離等于點(diǎn)E到x軸的距離的
2
3
?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案