精英家教網 > 初中數學 > 題目詳情

 

1.如圖1,中,,請用直尺和圓規(guī)作一條直線,把分割成兩個等腰三角形(不寫作法,但須保留作圖痕跡).

2.已知內角度數的兩個三角形如圖2、圖3所示.請你判斷,能否分別畫一條直線把它們分割成兩個等腰三角形?若能,請畫出直線并寫出分割成的兩個等腰三角形頂角的度數.

 

 

1.如圖,直線即為所求

2.如圖2能畫一條直線分割成兩個等腰三角形,

分割成的兩個等腰三角形的頂角分別是

圖3不能分割成兩個等腰三角形.

 解析:略

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,某隧道的截面是由一拋物線和一矩形構成,其行車道CD總寬度為8米,隧道為單行線2車道.
(1)以矩形一邊EF所在直線為x軸,經過隧道頂端最高點H且垂直于EF的直線為y軸,建立如圖所示的平面直角坐標系,求出此拋物線的解析式;
(2)在隧道拱的兩側距地面3米高處各安裝一盞路燈,在(1)的平面直角坐標系中,用坐標表示其中一盞路燈的位置;
(3)為了保證行車安全,要求行駛車輛頂部(設為平頂)與隧道拱在豎直方向上高度之差至少有0.5米.現有一輛汽車,裝載貨物后,其寬度為4米,車載貨物的頂部與路面的距離為2.5米,該車能否通過這個隧道?請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

數學家們通過長期的研究,得到了關于“等周問題”的重要結論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當邊數n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數學小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎上證明事實2:“等周長n邊形的面積,當邊數n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

我們知道過兩點有且只有一條直線.
閱讀下面文字,分析其內在涵義,然后回答問題:
如圖,同一平面中,任意三點不在同一直線上的四個點A、B、C、D,過每兩個點畫一條直線,一共可以畫出多少條直線呢?我們可以這樣來分析:
過A點可以畫出三條通過其他三點的直線,過B點也可以畫出三條通過其他三點的直線.同樣,過C點、D點也分別可以畫出三條通過其他三點的直線.這樣,一共得到3×4=12條直線,但其中每條直線都重復過一次,如直線AB和直線BA是一條直線,因此,圖中一共有
3×42
=6條直線.請你仿照上面分析方法,回答下面問題:
精英家教網
(1)若平面上有五個點A、B、C、D、E,其中任何三點都不在一條直線上,過每兩點畫一條直線,一共可以畫出
 
條直線;
若平面上有符合上述條件的六個點,一共可以畫出
 
條直線;
若平面上有符合上述條件的n個點,一共可以畫出
 
條直線(用含n的式子表示).
(2)若我校初中24個班之間進行籃球比賽,第一階段采用單循環(huán)比賽(每兩個班之間比賽一場),類比上面的分析計算第一階段比賽的總場次是多少?

查看答案和解析>>

科目:初中數學 來源:單科王牌  九年級數學(上) 題型:044

如圖所示,是工人師傅用同一根不帶刻度的直角尺作角平分線的示意圖.

(1)你認為工人師傅這種作角平分線的方法正確嗎?請說明理由.

(2)如圖所示中,除了OC平分∠BOA外,你還有哪些結論?寫出兩個正確結論.

查看答案和解析>>

科目:初中數學 來源:新課標讀想用  七年級數學(上)(北師大版) 題型:044

如圖所示,一輛汽車在直線形公路AB上由A向B行駛,M、N分別是位于公路兩側的村莊.

(1)設汽車行駛到公路AB上點P位置時,距離村莊M最近;行駛到點Q位置時,距離村莊N最近,請在圖中的公路AB上分別畫出點P和點Q的位置.

(2)當汽車從A出發(fā)向B行駛時,在公路AB的哪一段路上距離M、N兩村莊都越來越近?在哪一段路上距離村莊N越來越近,而離村莊M越來越遠?(分別用文字表述你的結論)

查看答案和解析>>

同步練習冊答案