【題目】閱讀下面的文字,解答問(wèn)題:

是一個(gè)無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分無(wú)法全部寫(xiě)出來(lái),但是我們可以想辦法把它表示出來(lái).因?yàn)?/span>,所以的整數(shù)部分為,將減去其整數(shù)部分后,得到的差就是小數(shù)部分,于是的小數(shù)部分為

1)求出的整數(shù)部分和小數(shù)部分:

2)求出的整數(shù)部分和小數(shù)部分;

3)如果的整數(shù)部分是,小數(shù)部分是,求出的值.

【答案】1的整數(shù)部分為小數(shù)部分為;(2的整數(shù)部分為,的小數(shù)部分為;(3

【解析】

1)利用,得出的取值范圍,進(jìn)而得出答案;
2)利用12,進(jìn)而得出答案;
3)利用的取值范圍,進(jìn)而求出答案.

解:(1

的整數(shù)部分為

小數(shù)分部是:

故答案為:2,

2)∵12,

的整數(shù)部分為,那么小數(shù)部分為:

故答案為:2,

3的整數(shù)部分是,小數(shù)部分是,

那么的整數(shù)部分為3,即,小數(shù)部分為,即,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點(diǎn)G在菱形對(duì)角線AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]

(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;

(2)知識(shí)探究:

①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫(xiě)出證明過(guò)程);

②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過(guò)程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;

(3)問(wèn)題解決:如圖丙,已知菱形的邊長(zhǎng)為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長(zhǎng)度。

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是定長(zhǎng)線段,圓心OAB的中點(diǎn),AE、BF為切線,E、F為切點(diǎn),滿(mǎn)足AE=BF,在上取動(dòng)點(diǎn)G,國(guó)點(diǎn)G作切線交AE、BF的延長(zhǎng)線于點(diǎn)D、C,當(dāng)點(diǎn)G運(yùn)動(dòng)時(shí),設(shè)AD=y,BC=x,則yx所滿(mǎn)足的函數(shù)關(guān)系式為(  )

A. 正比例函數(shù)y=kx(k為常數(shù),k≠0,x>0)

B. 一次函數(shù)y=kx+b(k,b為常數(shù),kb≠0,x>0)

C. 反比例函數(shù)y=(k為常數(shù),k≠0,x>0)

D. 二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0,x>0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A在第四象限,點(diǎn)Bx軸正半軸上,在△OAB中,∠OAB90°,ABAO6,點(diǎn)P為線段OA上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A和點(diǎn)O重合),過(guò)點(diǎn)POA的垂線交x軸于點(diǎn)C,以點(diǎn)C為正方形的一個(gè)頂點(diǎn)作正方形CDEF,使得點(diǎn)D在線段CB上,點(diǎn)E在線段AB上.

1)①求直線AB的函數(shù)表達(dá)式.

②直接寫(xiě)出直線AO的函數(shù)表達(dá)式   

2)連接PF,在RtCPF中,∠CFP90°時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo)為   

3)在(2)的前提下,直線DPy軸于點(diǎn)H,交CF于點(diǎn)K,在直線OA上存在點(diǎn)Q.使得△OHQ的面積與△PKE的面積相等,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,、分別是的平分線,,交,交,,,結(jié)論①;②;③;④.其中正確的有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列動(dòng)車(chē)從甲地開(kāi)往乙地, 一列普通列車(chē)從乙地開(kāi)往甲地,兩車(chē)均勻速行駛并同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為 (小時(shí)),兩車(chē)之間的距離為 (千米),如圖中的折線表示之間的函數(shù)關(guān)系,下列說(shuō)法:①動(dòng)車(chē)的速度是千米/小時(shí);②點(diǎn)B的實(shí)際意義是兩車(chē)出發(fā)后小時(shí)相遇;③甲、乙兩地相距千米;④普通列車(chē)從乙地到達(dá)甲地時(shí)間是小時(shí),其中不正確的有( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),共享單車(chē)服務(wù)的推出(如圖1),極大的方便了城市公民綠色出行,圖2是某品牌某型號(hào)單車(chē)的車(chē)架新投放時(shí)的示意圖(車(chē)輪半徑約為30cm),其中BC∥直線l,BCE=71°,CE=54cm.

(1)求單車(chē)車(chē)座E到地面的高度;(結(jié)果精確到1cm)

(2)根據(jù)經(jīng)驗(yàn),當(dāng)車(chē)座ECB的距離調(diào)整至等于人體胯高(腿長(zhǎng))的0.85時(shí),坐騎比較舒適.小明的胯高為70cm,現(xiàn)將車(chē)座E調(diào)整至座椅舒適高度位置E′,求EE′的長(zhǎng).(結(jié)果精確到0.1cm)

(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】幾何模型:

條件:如圖1,A、B是直線同旁的兩個(gè)定點(diǎn).

問(wèn)題:在直線上確定一點(diǎn)P,使PA+PB的值最。

方法:作點(diǎn)A關(guān)于直線的對(duì)稱(chēng)點(diǎn)A′,連接A′B于點(diǎn)P,則PA+PB=A′B的值最小(不必證明).

模型應(yīng)用:

(1)如圖2,已知平面直角坐標(biāo)系中兩定點(diǎn)A(0,-1),B(2,-1),Px軸上一動(dòng)點(diǎn), 則當(dāng)PA+PB的值最小時(shí),點(diǎn)P的橫坐標(biāo)是______,此時(shí)PA+PB的最小值是______;

(2)如圖3,正方形ABCD的邊長(zhǎng)為2,EAB的中點(diǎn),PAC上一動(dòng)點(diǎn).由正方形對(duì)稱(chēng)性可知,BD關(guān)于直線AC對(duì)稱(chēng),連接BD,則PB+PE的最小值是______;

(3)如圖4,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一動(dòng)點(diǎn)P,則PD+PE的最小值為 ;

(4)如圖5,在菱形ABCD中,AB=8,∠B=60°,點(diǎn)G是邊CD邊的中點(diǎn),點(diǎn)E、F分別是AG、AD上的兩個(gè)動(dòng)點(diǎn),則EF+ED的最小值是_______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案