【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于C點.
(1)點P是線段BC下方的拋物線上一點,過點P作PD⊥BC交BC于點D,過點P作EP∥y軸交BC于點E.點MN是直線BC上兩個動點且MN=AO(xM<xN).當DE長度最大時,求PM+MN﹣BN的最小值.
(2)將點A向左移動3個單位得點G,△GOC延直線BC平移運動得到三角形△G'O′C'(兩三角形可重合),則在平面內是否存在點G',使得△G′BC為等腰三角形,若存在,直接寫出滿足條件的所有點G′的坐標,若不存在請說明理由.
【答案】(1);(2)點G′(﹣4,0)或(﹣,).
【解析】
(1)DE=PEsin∠EPD=(x﹣﹣x2+x+),當x=2時,DE最大,此時點P(2,﹣);MN=AO=1,將△BCO沿BC翻折得到△BCO′,將點P沿CB的方向平移1個單位得到點P′(,),作P′H⊥BO′交BO′于點H,交BC于點N,將點N沿BC方向平移1個單位得到點M,則點M、N為所求,即可求解;
(2)分BC=BG′、BC=G′C、BG=CG′三種情況,分別求解即可.
(1)y==(x﹣4)(x+1),
故點A、B、C的坐標分別為:(﹣1,0)、(4,0)、(0,﹣);
則直線BC的表達式為:y=(x﹣4);
設點P(x,),則點E(x,x﹣),
∵,∠EPD=∠OBC,
∴DE=PEsin∠EPD=(x﹣﹣x2+x+),
當x=2時,DE最大,此時點P(2,﹣);
MN=AO=1,將△BCO沿BC翻折得到△BCO′,
將點P沿CB的方向平移1個單位得到點P′(,),作P′H⊥BO′交BO′于點H,交BC于點N,
將點N沿BC方向平移1個單位得到點M,則點M、N為所求;
P′P∥MN,且PP′=MN,則四邊形P′PNM為平行四邊形,則P′N=PM,
∠CBO′=∠OBC=30°,則HN=NBsin30=BN,
PM+MN﹣BN=MN+P′N﹣BN=MN+P′H為最;
直線BO′的傾斜角為60°,則其表達式為:y=(x﹣4)…①,
則直線P′N表達式中的k為:﹣,其表達式為:y=﹣x+b,
將點P′坐標代入并解得:
直線P′N的表達式為:y=﹣x+…②,
聯(lián)立①②并解得:x=,故點H(,);
P′H=,
PM+MN﹣BN最小值=MN+P′N﹣BN=MN+P′H=;
(2)直線BC的表達式為:y=(x﹣4);點G(﹣4,0),
設△GOC沿直線BC向上平移m個單位,則向右平移m個單位,則點G′(m﹣4,m);
BC2=,BG′2=(m﹣8)2+3m2,CG′2=(m﹣4)2+(m+)2=4m2+;
①當BC=BG′時,BC2=(m﹣8)2+3m2,方程無解;
②當BC=G′C時,同理可得:m=0;
③當BG=CG′時,同理可得:m=;
即m=0或,
故點G′(﹣4,0)或(﹣,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過D作DO⊥AB,垂足為O,點B′在邊AB上,且與點B關于直線DO對稱,連接DB′,AD.
(1)求證:△DOB∽△ACB;
(2)若AD平分∠CAB,求線段BD的長;
(3)當△AB′D為等腰三角形時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在銳角中,邊長長為18,高長為12.
(1)如圖,矩形的邊在邊上,其余兩個頂點、分別在、邊上,交于點,求的值.
(2)設,矩形的面積為,求于的函數(shù)關系式,并求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結果精確到0.1小時)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊的中點,連接AD,過點D作DE∥AB
(1)若∠C=70°,求∠BAD的度數(shù);
(2)求證:AE=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB=12,C、D是AB上兩點,且AC=DB=2,P是線段CD上一動點,在AB同側分別作等邊三角形APE和等邊三角形PBF,G為線段EF的中點,點P由點C移動到點D時,G點移動的路徑長度為_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)如圖,在平面直角坐標系xOy中,拋物線()與x軸交于A,B兩點(點A在點B的左側),經過點A的直線l:與y軸負半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)直接寫出點A的坐標,并求直線l的函數(shù)表達式(其中k,b用含a的式子表示);
(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為,求a的值;
(3)設P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A,D,P,Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,點D在⊙O上,AC平分∠BAD,延長AB到點E且有∠BCE=∠CAD.
(1)求證:CE是⊙O的切線;
(2)若AB=10,AD=6,求BC,CE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com