【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).

(1)探究:上述操作能驗證的等式是 ;(請選擇正確的一個)

A.a(chǎn)2-2ab+b2=(a-b)2 B.a(chǎn)2-b2=(a+b)(a-b)

C.a(chǎn)2+ab=a(a+b)

(2)應用:利用你從(1)選出的等式,完成下列各題:

①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;

②計算:

【答案】(1)B;(2),4;

【解析】

(1)根據(jù)兩個圖形中陰影部分的面積相等,即可列出等式;(2)①把9x2-4y2利用(1)的結論寫成兩個式子相乘的形式,然后把3x+2y=6代入即可求解;②利用(1)的結論化成式子相乘的形式即可求解.

(1)第一個圖形中陰影部分的面積是a2-b2,第二個圖形的面積是(a+b)(a-b),
a2-b2=(a+b)(a-b).
故答案是B;
(2)①∵9x2-4y2=(3x+2y)(3x-2y),
∴24=6(x-2y)
得:3x-2y=4;
②原式=

=

=

=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形紙片ABCD沿FH折疊,使點D與AB的中點E重合,則△FAE與△EBG的面積之比為(
A.4:9
B.2:3
C.3:4
D.9:16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC ,C=90°,AD ABC 的角平分線,DEAB E,AC=BE.

(1)求證:AD=BD;

(2)B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB=30°,點A坐標為(2,0),過A作AA1⊥OB,垂足為點A1;過點A1作A1A2⊥x軸,垂足為點A2;再過點A2作A2A3⊥OB,垂足為點A3;則A2A3=;再過點A3作A3A4⊥x軸,垂足為點A4…;這樣一直作下去,則A2017的縱坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,六邊形ABCDEF的六個內角都相等.若AB=1,BC=CD=3DE=2,則這個六邊形的周長等于_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將RtABC沿射線BC方向平移得到DEF,已知AB=16cm,BE=10cm,DH=6cm,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣A、B兩類薄弱學校全部進行改造,根據(jù)預算,共需資金1575萬元,改造一所A類學校和兩所B類學校共需資金230萬元;改造兩所A類學校和一所B類學校共需資金205萬元.

(1)改造一所A類學校和一所B類學校所需的資金分別是多少萬元?

(2我市計劃今年對該縣A、B兩類學校共6所進行改造,改造資金由國家財政和地方財政共同承擔。若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到A、B兩類學校的改造資金分別為每所10萬元和15萬元。請你通過計算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶樱蚩梢郧蟪鲆恍┎灰(guī)則圖形的面積.

(1)如圖1,是將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的方法計算這個圖形的面積,你能發(fā)現(xiàn)什么結論,請寫出來.

(2)如圖2,是將兩個邊長分別為a和b的正方形拼在一起,B、C、G三點在同一直線上,連接BD和BF,若兩正方形的邊長滿足a+b=10,ab=20,你能求出陰影部分的面積嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=∠2,∠C=∠D,那么DFAC,請完成它成立的理由

∵∠1=∠2,∠2=∠3 ,∠1=∠4(

∴∠3=∠4(

∴________∥_______ (

∴∠C=∠ABD

∵∠C=∠D

∴∠D=∠ABD

DFAC

查看答案和解析>>

同步練習冊答案