【題目】已知y關(guān)于x的函數(shù)表達(dá)式是,下列結(jié)論不正確的是(

A.,函數(shù)的最大值是5

B.,當(dāng)時(shí),yx的增大而增大

C.無論a為何值時(shí),函數(shù)圖象一定經(jīng)過點(diǎn)

D.無論a為何值時(shí),函數(shù)圖象與x軸都有兩個(gè)交點(diǎn)

【答案】D

【解析】

a的值代入函數(shù)表達(dá)式,根據(jù)二次函數(shù)的圖象與性質(zhì)可判斷AB,將x=1代入函數(shù)表達(dá)式可判斷C,當(dāng)a=0時(shí),y=-4x是一次函數(shù),與x軸只有一個(gè)交點(diǎn),可判斷D錯(cuò)誤.

當(dāng)時(shí),,

∴當(dāng)時(shí),函數(shù)取得最大值5,故A正確;

當(dāng)時(shí),,

∴函數(shù)圖象開口向上,對(duì)稱軸為

∴當(dāng)時(shí),yx的增大而增大,故B正確;

當(dāng)x=1時(shí),

∴無論a為何值,函數(shù)圖象一定經(jīng)過(1,-4),故C正確;

當(dāng)a=0時(shí),y=-4x,此時(shí)函數(shù)為一次函數(shù),與x軸只有一個(gè)交點(diǎn),故D錯(cuò)誤;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)OAPB的平分線上,OPA相切于點(diǎn)C

1)求證:直線PBO相切;

2PO的延長(zhǎng)線與O交于點(diǎn)E.若O的半徑為3PC=4.求弦CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點(diǎn)D,交BC于點(diǎn)E,已知A,0),∠DOE=30°,則k的值為(

A.B.C.3D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場(chǎng)行情,把新茶價(jià)格定為400/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1x15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷售額-日制茶成本)

制茶成本(元/kg

150+10x

制茶量(kg

40+4x

1)求出該茶廠第10天的收入;

2)設(shè)該茶廠第x天的收入為y(元).試求出yx之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖所示直線y=kx+2(k0)與反比例函數(shù)y=(m0)分別交于點(diǎn)P,與y軸、x軸分別交于點(diǎn)A和點(diǎn)B,且cosABO=,過P點(diǎn)作x軸的垂線交于點(diǎn)C,連接AC,

(1)求一次函數(shù)的解析式.

(2)若AC是△PCB的中線,求反比例函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是菱形對(duì)角線的交點(diǎn),,連接于點(diǎn)

1)求證:

2)若菱形的邊長(zhǎng)為2,且,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問題:

(1)求參與問卷調(diào)查的總?cè)藬?shù).

(2)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會(huì)關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道上確定點(diǎn)D,使CD與垂直,測(cè)得CD的長(zhǎng)等于21米,在上點(diǎn)D的同側(cè)取點(diǎn)A、B,使CAD=300,CBD=600

(1)求AB的長(zhǎng)(精確到0.1米,參考數(shù)據(jù):);

(2)已知本路段對(duì)校車限速為40千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)2秒,這輛校車是否超速?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,線段及一定點(diǎn),是線段上一動(dòng)點(diǎn)(除外),作直線,使于點(diǎn),作直線,使于點(diǎn).已知,,設(shè),,數(shù)學(xué)學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)之間的內(nèi)在關(guān)系進(jìn)行探究.

1)寫出y之間的關(guān)系和的取值范圍;

活動(dòng)操作:

2)①列表,根據(jù)(1)的所求函數(shù)關(guān)系式講算并補(bǔ)全表格

0.5

1

1.5

2

2.5

3

3.5

1.8

9

21

②描點(diǎn):根據(jù)表格中數(shù)值,繼續(xù)在圖2中描出剩余的三個(gè)點(diǎn);

③連線:在平面直角坐標(biāo)系中,請(qǐng)用平滑的曲線畫出該函數(shù)的圖象.

數(shù)學(xué)思考:

3)請(qǐng)你結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì)或結(jié)論.

4)將該函數(shù)圖象向上移3個(gè)單位,再向左平移4個(gè)單位后,直接寫出平移后的函數(shù)關(guān)系式和的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案