如圖①是矩形包書紙的示意圖,虛線是折痕,四個角均為大小相同的正方形,正方形的邊長為折疊進(jìn)去的寬度.

(1)現(xiàn)有一本書長為25cm,寬為20cm,厚度是2cm,如果按照如圖①的包書方式,并且折疊進(jìn)去的寬度是3cm,則需要書包紙的長和寬分別為多少?(請直接寫出答案).
(2)已知數(shù)學(xué)課本長為26 cm,寬為18.5cm,厚為1cm,小明用一張面積為1260cm2的矩形書包紙按如圖①包好了這本書,求折進(jìn)去的寬度.
(3)如圖②,矩形ABCD是一張一個角(△AEF)被污損的書包紙,已知AB=30,BC=50,AE=12,AF=16,要使用沒有污損的部分包一本長為19,寬為16,厚為6的字典,小紅認(rèn)為只要按如圖②的剪裁方式剪出一張面積最大的矩形PGCH就能包好這本字典. 設(shè)PM=x,矩形PGCH的面積為y,當(dāng)x取何值時(shí)y最大?并由此判斷小紅的想法是否可行.
(1)長48cm,寬31cm;(2)2cm;(3)不可行

試題分析:(1)仔細(xì)分析題意及圖形的特征即可得到結(jié)果;
(2)設(shè)折進(jìn)去的寬度為xcm,根據(jù)“長為26 cm,寬為18.5cm,厚為1cm,矩形的面積為1260cm2”及可列方程求解,要注意解的取舍;
(3)先由題意表示出EM,再根據(jù)矩形的面積公式得到y(tǒng)與x的函數(shù)關(guān)系式,最后根據(jù)二次函數(shù)的性質(zhì)求解即可.
(1)由題意得長48cm,寬31cm;
(2)設(shè)折進(jìn)去的寬度為xcm,由題意得
(26+2x)(18.52+1+2x)=1260
解得x1=2,x2=-34(舍去)
答:折進(jìn)去的寬度是2cm;
(3)由題意得EM=
所以
當(dāng)x=13時(shí),y最大
因?yàn)?0-13=37<16×2+6=38  
所以小紅的想法不可行.
點(diǎn)評:二次函數(shù)的應(yīng)用是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=-x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(-1,0),C(0,3).

(1)求拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo)及直線BC的解析式;
(3)如圖,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,求△BDC的面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)圖像的最低點(diǎn)坐標(biāo)是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸相交于B,C兩點(diǎn),與y軸相交于點(diǎn)AP(2a,-4a2+7a+2)(a是實(shí)數(shù))在拋物線上,直線y=k x +b經(jīng)過AB兩點(diǎn).

(1)求直線AB的解析式;
(2)平行于y軸的直線x=2交直線AB于點(diǎn)D,交拋物線于點(diǎn)E
①直線x=t(0≤t≤4)與直線AB相交F,與拋物線相交于點(diǎn)G.若FGDE=3∶4,求t的值;
②將拋物線向上平移m(m>0)個單位,當(dāng)EO平分∠AED時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“天天樂”商場銷售一種進(jìn)價(jià)為20元/臺的臺燈,經(jīng)調(diào)查發(fā)現(xiàn),該臺燈每天的銷售量w(臺)與銷售單價(jià)x(元)滿足,設(shè)銷售這種臺燈每天的利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤最大?最大利潤是多少?
(3)在保證銷售量盡可能大的前提下,該商場每天還想獲得150元的利潤,應(yīng)該將銷售單價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線x軸交于A(,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線上第三象限內(nèi)的一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),四邊形ABCP的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABCP的面積;
(3)點(diǎn)M在拋物線對稱軸上,點(diǎn)N是平面內(nèi)一點(diǎn),是否存在這樣的點(diǎn)M、N,使得以點(diǎn)M、N、BC為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商廈將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價(jià)50x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價(jià)多少元?
(3)每臺冰箱降價(jià)多少元時(shí),商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知二次函數(shù)的圖像與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,連接AC,點(diǎn)P是拋物線上的一個動點(diǎn),記△APC的面積為S,當(dāng)S=2時(shí),相應(yīng)的點(diǎn)P的個數(shù)是(   )
A.4 個B.3個C.2個D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把二次函數(shù)的圖像沿y軸向上平移1個單位長度,與y軸的交點(diǎn)為C,則C點(diǎn)坐標(biāo)是      

查看答案和解析>>

同步練習(xí)冊答案