【題目】如圖所示,在ABC中,DEBC,ADE和梯形DBCE的面積相等,則ADDB_____

【答案】+1

【解析】

ADE和梯形DBCE的面積相等,且ADE和梯形DBCE的面積之和等于ABC的面積,所以ADE的面積與ABC的面積之比為12,然后由DEBC,根據(jù)兩直線平行得到兩對同位角相等,進而得到ADEABC相似,根據(jù)相似三角形的面積比等于相似比的平方,由面積之比求出相似比,進而求出對應(yīng)邊ADAB的比,根據(jù)比例性質(zhì)即可求出ADDB的比值.

解:∵△ADE和梯形DBCE的面積相等,

,即,

又∵DEBC,∴∠ADE=∠ABC,∠AED=∠ACB,

∴△ADE∽△ABC,∴

故答案為:+1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】探究問題:

方法感悟:

如圖,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

感悟解題方法,并完成下列填空:

△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時ABAD重合,由旋轉(zhuǎn)可得:

AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

∴∠ABG+∠ABF=90°+90°=180°,

因此,點G,B,F(xiàn)在同一條直線上.

∵∠EAF=45°

∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

∵∠1=∠2,

∴∠1+∠3=45°.

∠GAF=∠_________.

AG=AE,AF=AF

∴△GAF≌_______.

∴_________=EF,故DE+BF=EF.

方法遷移:

如圖,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.

問題拓展:

如圖,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一勞動節(jié)大酬賓!,某商場設(shè)計的促銷活動如下:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0”、“10”、“20“50的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.

(1)該顧客至多可得到________元購物券;

(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中已知點O,A,B均為網(wǎng)格線的交點.

(1)在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2,得到線段(點A,B的對應(yīng)點分別為).畫出線段;

(2)將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;

(3)以為頂點的四邊形的面積是 個平方單位.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線與直線相交于點(點在第一象限),其橫坐標為2.

1)求的值;

2)若兩個圖像在第三象限的交點為,則點的坐標為 ;

3)點為此反比例函數(shù)圖像上一點,其縱坐標為3,過點,交軸于點,直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點ABC(頂點是網(wǎng)格線的交點)

1)將ABC向左平移1個單位,再向上平移5個單位件到A1B1C1請畫出A1B1C1

2)請在網(wǎng)格中將ABCA為位似中心放大3倍,得AB2C2,請畫出AB2C2

3A1B1C1AB2C2的面積比為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應(yīng)降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD和平行四邊形BEFG,AB=AD,BG=BE,A、 B、 E在同一直線上,P是線段DF的中點,連接PG、PC,若∠ABC=BEF=60°,=( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點DE分別在BCAC上,且BDCEADBE相交于點F,

(1)證明:△ABD≌△BCE;

(2)證明:△ABE∽△FAE;

(3)AF7,DF1,求BD的長.

查看答案和解析>>

同步練習冊答案