【題目】在矩形 ABCD 中,M,N,P,Q 分別為邊 AB,BC,CD,DA 上的點(不與端點重合).對于任意矩形 ABCD,下面四個結(jié)論中:①存在無數(shù)個四邊形 MNPQ 是平行四邊形;②存在無數(shù)個四邊形 MNPQ 是矩形;③存在無數(shù)個四邊形 MNPQ 是菱形;④不存在四邊形 MNPQ 是正方形.所有正確結(jié)論的序號是_________________ .
【答案】①②③
【解析】
根據(jù)矩形的判定和性質(zhì),菱形的判定,正方形的判定,平行四邊形的判定定理即可得到結(jié)論.
解:①如圖,∵四邊形ABCD是矩形,連接AC,BD交于O,
過點O直線MP和QN,分別交AB,BC,CD,AD于M,N,P,Q,
則四邊形MNPQ是平行四邊形,
故存在無數(shù)個四邊形MNPQ是平行四邊形;故正確;
②如圖,當(dāng)PM=QN時,四邊形MNPQ是矩形,故存在無數(shù)個四邊形MNPQ是矩形;故正確;
③如圖,當(dāng)PM⊥QN時,存在無數(shù)個四邊形MNPQ是菱形;故正確;
④當(dāng)四邊形MNPQ是正方形時,MQ=PQ,
則△AMQ≌△DQP,
∴AM=QD,AQ=PD,
∵PD=BM,
∴AB=AD,
∴四邊形ABCD是正方形,
當(dāng)四邊形ABCD為正方形時,四邊形MNPQ是正方形,故錯誤;
故答案為:①②③.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,點為直線上一動點(點不與、重合).以為邊向右側(cè)作正方形,連結(jié).
(猜想)如圖①,當(dāng)點在線段上時,直接寫出、、三條線段的數(shù)量關(guān)系.
(探究)如圖②,當(dāng)點在線段的延長線上時,判斷、、三條線段的數(shù)量關(guān)系,并說明理由.
(應(yīng)用)如圖③,當(dāng)點在線段的反向延長線上時,點、分別在直線兩側(cè),、交點為點連結(jié),若,,則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=12cm,AD=20cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點在直線上,過點作,且,點在射線上(點不與點重合),且滿足,,與交于點,過點作于點.設(shè).
(1)用含的代數(shù)式表示的長;
(2)①線段的長是________;
②線段的長是_________;(用含的代數(shù)式表示)
(3)當(dāng)為何值時,有最小值?并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線的頂點坐標(biāo)為,并與軸交于點,點是對稱軸與軸的交點.
(1)求拋物線的解析式;
(2)如圖①所示, 是拋物線上的一個動點,且位于第一象限,連結(jié)BP、AP,求的面積的最大值;
(3)如圖②所示,在對稱軸的右側(cè)作交拋物線于點,求出點的坐標(biāo);并探究:在軸上是否存在點,使?若存在,求點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,已知拋物線y= x2 -2px+q.
(1)當(dāng)p=2 時,
①拋物線的頂點坐標(biāo)橫坐標(biāo)為____ ___,縱坐標(biāo)為__________(用含 q 的式子表示);
②若點 A(-1,y1),B(x2,y2 )都在拋物線上,且y2 >y1,令x2 = m,則 m的取值范圍是_____________;
(2)已知點 M(3,2),將點 M 向左平移 5 個單位長度,得到點 N.當(dāng)q=6 時,若拋物線與線段 MN 恰有一個公共點,結(jié)合函數(shù)圖象,求 p 的取值范圍為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組
請結(jié)合題意,完成本題的解答:
(Ⅰ)解不等式①,得______;
(Ⅱ)解不等式②,得______;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場以每件10元的價格購進(jìn)一種商品,試銷中發(fā)現(xiàn),這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數(shù),其函數(shù)圖像如圖所示.
(1)求商場每天銷售這種商品的銷售利潤y(元)與每件的銷售價x(元)之間的函數(shù)解析式;
(2)試判斷,每件商品的銷售價格在什么范圍內(nèi),每天的銷售利潤隨著價格的提高而增加.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,點在軸上,以點為直角頂點作等腰直角..當(dāng)點落在某函數(shù)的圖象上時,稱點為該函數(shù)的“懸垂點”,為該函數(shù)的“懸垂等腰直角三角形”.
(1)若點是函數(shù)的懸垂點,直接寫出點的橫坐標(biāo)為________.
(2)若反比例函數(shù)的懸垂等腰直角三角形面積是,求的值.
(3)對于函數(shù),當(dāng)時,該函數(shù)的懸垂點只有一個,求的取值范圍.
(4)若函數(shù)的懸垂等腰直角的面積范圍為,且點在第一象限,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com