(2009•西城區(qū)一模)已知:如圖,AB為⊙O的弦,過(guò)點(diǎn)O作AB的平行線(xiàn),交⊙O于點(diǎn)C,直線(xiàn)OC上一點(diǎn)D滿(mǎn)足∠D=∠ACB.
(1)判斷直線(xiàn)BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑等于4,tan∠ACB=,求CD的長(zhǎng).

【答案】分析:(1)應(yīng)該是相切,連接OB證OB⊥BD即可.本題的基本思路是通過(guò)平行線(xiàn),弦切角定理,等邊對(duì)等角,來(lái)得出相等的角,然后將這些相等的角進(jìn)行置換,最終轉(zhuǎn)換到一個(gè)三角形中,根據(jù)三角形的內(nèi)角和來(lái)求出度數(shù).從而得出∠OBD=90°的結(jié)論.
(2)有了∠ACB的正切值也就有了∠D的正切值,那么可在直角三角形OBD中,有半徑的長(zhǎng),有∠D的正切值,可用正弦函數(shù)求出OD的長(zhǎng),也就求出了CD的長(zhǎng).
解答:解:(1)直線(xiàn)BD與⊙O相切.
證明:如圖,連接OB.
∵∠OCB=∠CBD+∠D,∠1=∠D,
∴∠2=∠CBD,
∵AB∥OC,
∴∠2=∠A,
∴∠A=∠CBD.
∵OB=OC,
∴∠BOC+2∠3=180°.
∵∠BOC=2∠A,
∴∠A+∠3=90°.
∴∠CBD+∠3=90°.
∴∠OBD=90°.
∴直線(xiàn)BD與⊙O相切.

(2)∵∠D=∠ACB,tan∠ACB=,
∴tanD=
∵∠OBD=90°,OB=4,tanD=,
∴sinD=,OD==5.
∴CD=OD-OC=1.
點(diǎn)評(píng):本題考查的是切線(xiàn)的判定以及解直角三角形,要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷32(新灣初中 薛源海)(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與,的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市文瀾中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年吉林省琿春市琿春四中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與,的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省泰州市泰興市濟(jì)川實(shí)驗(yàn)初中中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:反比例函數(shù)在平面直角坐標(biāo)系xOy第一象限中的圖象如圖所示,點(diǎn)A在的圖象上,AB∥y軸,與的圖象交于點(diǎn)B,AC、BD與x軸平行,分別與,的圖象交于點(diǎn)C、D.
(1)若點(diǎn)A的橫坐標(biāo)為2,求梯形ACBD的對(duì)角線(xiàn)的交點(diǎn)F的坐標(biāo);
(2)若點(diǎn)A的橫坐標(biāo)為m,比較△OBC與△ABC的面積的大小,并說(shuō)明理由;
(3)若△ABC與以A、B、D為頂點(diǎn)的三角形相似,請(qǐng)直接寫(xiě)出點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)已知:如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線(xiàn)AB上,折痕交x軸于點(diǎn)C.
(1)直接寫(xiě)出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)若拋物線(xiàn)的頂點(diǎn)為D,在直線(xiàn)BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC的交點(diǎn)為T(mén),Q為線(xiàn)段BT上一點(diǎn),直接寫(xiě)出|QA-QO|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案