精英家教網 > 初中數學 > 題目詳情
已知拋物線yn=-(x-an2+an(n為正整數,且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(______,______);依此類推第n條拋物線yn的頂點坐標為(______,______);所有拋物線的頂點坐標滿足的函數關系式是______;
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出AA1的值,并求出An-1An
②是否存在經過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

【答案】分析:(1)因為點A(0,0)在拋物線y1=-(x-a12+a1上,可求得a1=1,則y1=-(x-1)2+1;令y1=0,求得A1(2,0),b1=2;再由點A1(2,0)在拋物線y2=-(x-a22+a2上,求得a2=4,y2=-(x-4)2+4.
(2)求得y1的頂點坐標(1,1),y2的頂點坐標(4,4),y3的頂點坐標(9,9),依此類推,yn的頂點坐標為(n2,n2).因為所有拋物線頂點的橫坐標等于縱坐標,所以頂點坐標滿足的函數關系式是:y=x.
(3)①由A(0,0),A1(2,0),求得AA1=2;yn=-(x-n22+n2,令yn=0,求得An-1(n2-n,0),An(n2+n,0),所以An-1An=(n2+n)-(n2-n)=2n;
②設直線解析式為:y=kx-2k,設直線y=kx-2k與拋物線yn=-(x-n22+n2交于E(x1,y1),F(x2,y2)兩點,聯(lián)立兩式得一元二次方程,得到x1+x2=2n2-k,x1•x2=n4-n2-2k.然后作輔助線,構造直角三角形,求出EF2的表述式為:EF2=(k2+1)[4n2•(1-k)+k2+8k],可見當k=1時,EF2=18為定值.所以滿足條件的直線為:y=x-2.
解答:解:(1)∵當n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A(0,0),
∴0=-(0-a12+a1,解得a1=1或a1=0.
由已知a1>0,∴a1=1,
∴y1=-(x-1)2+1.
令y1=0,即-(x-1)2+1=0,解得x=0或x=2,
∴A1(2,0),b1=2.
由題意,當n=2時,第2條拋物線y2=-(x-a22+a2經過點A1(2,0),
∴0=-(2-a22+a2,解得a2=1或a2=4,
∵a1=1,且已知a2>a1,
∴a2=4,
∴y2=-(x-4)2+4.
∴a1=1,b1=2,y2=-(x-4)2+4.

(2)拋物線y2=-(x-4)2+4,令y2=0,即-(x-4)2+4=0,解得x=2或x=6.
∵A1(2,0),
∴A2(6,0).
由題意,當n=3時,第3條拋物線y3=-(x-a32+a3經過點A2(6,0),
∴0=-(6-a32+a3,解得a3=4或a3=9.
∵a2=4,且已知a3>a2
∴a3=9,
∴y3=-(x-9)2+9.
∴y3的頂點坐標為(9,9).
由y1的頂點坐標(1,1),y2的頂點坐標(4,4),y3的頂點坐標(9,9),
依此類推,yn的頂點坐標為(n2,n2).
∵所有拋物線頂點的橫坐標等于縱坐標,
∴頂點坐標滿足的函數關系式是:y=x.


(3)①∵A(0,0),A1(2,0),
∴AA1=2.
yn=-(x-n22+n2,令yn=0,即-(x-n22+n2=0,
解得x=n2+n或x=n2-n,
∴An-1(n2-n,0),An(n2+n,0),即An-1An=(n2+n)-(n2-n)=2n.
②存在.
設過點(2,0)的直線解析式為y=kx+b,則有:0=2k+b,得b=-2k,
∴y=kx-2k.
設直線y=kx-2k與拋物線yn=-(x-n22+n2交于E(x1,y1),F(x2,y2)兩點,
聯(lián)立兩式得:kx-2k=-(x-n22+n2,整理得:x2+(k-2n2)x+n4-n2-2k=0,
∴x1+x2=2n2-k,x1•x2=n4-n2-2k.
過點F作FG⊥x軸,過點E作EG⊥FG于點G,則EG=x2-x1
FG=y2-y1=[-(x2-n22+n2]-[-(x1-n22+n2]=(x1+x2-2n2)(x1-x2)=k(x2-x1).
在Rt△EFG中,由勾股定理得:EF2=EG2+FG2
即:EF2=(x2-x12+[k(x2-x1)]2=(k2+1)(x2-x12=(k2+1)[(x1+x22-4x1•x2],
將x1+x2=2n2-k,x1•x2=n4-n2-2k代入,整理得:EF2=(k2+1)[4n2•(1-k)+k2+8k],
當k=1時,EF2=(1+1)(1+8)=18,
∴EF=2為定值,
∴k=1滿足條件,此時直線解析式為y=x-2.
∴存在滿足條件的直線,該直線的解析式為y=x-2.
點評:本題考查了二次函數綜合題型,考查了二次函數圖象上點的坐標特征、頂點坐標、拋物線與x軸的交點坐標、待定系數法、一次函數、解一元二次方程、根與系數關系、勾股定理等知識點.本題涉及考點眾多,計算量比較大,有一點的難度.難點在于第(3)②問,需要靈活運用一元二次方程根與系數關系進行化簡與計算.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•南昌)已知拋物線yn=-(x-an2+an(n為正整數,且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(
9
9
9
9
);依此類推第n條拋物線yn的頂點坐標為(
n2
n2
n2
n2
);所有拋物線的頂點坐標滿足的函數關系式是
y=x
y=x

(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出A0A1的值,并求出An-1An
②是否存在經過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數,且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(______,______);依此類推第n條拋物線yn的頂點坐標為(______,______);所有拋物線的頂點坐標滿足的函數關系式是______;
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2013年江西省中考數學試卷(解析版) 題型:解答題

已知拋物線yn=-(x-an2+an(n為正整數,且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線y1=-(x-a12+a1與x軸的交點為A(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(______,______);依此類推第n條拋物線yn的頂點坐標為(______,______);所有拋物線的頂點坐標滿足的函數關系式是______;
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得的線段長,直接寫出AA1的值,并求出An-1An
②是否存在經過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2013-2014學年江蘇省泰興市九年級3月月考數學試卷(解析版) 題型:解答題

已知拋物線yn=-(xan)2an(n為正整數,且0a1a2an)x軸的交點為An1(,0)An(bn,0).當n1時,第1條拋物線y1=-(xa1)2a1x軸的交點為A0(0,0)A1(b1,0),其他依此類推.

(1) a1b1的值及拋物線y2的解析式;

(2) 拋物線y3的頂點坐標為(_______);依此類推第n條拋物線yn的頂點坐標為(_____,_____)(用含n的式子表示);所有拋物線的頂點坐標滿足的函數關系式是_____________;

(3) 探究下列結論:

若用An1 An表示第n條拋物線被x軸截得的線段的長,則A0A1=______, An1 An=____________;

否存在經過點A1(b1,0)的直線和所有拋物線都相交,且被每一條拋物線截得的線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案