求滿足下列條件的正整數(shù)n的所有可能值:對這樣的n,能找到實數(shù)a、b,使得函數(shù)f(x)=
1n
x2+ax+b對任意整數(shù)x,f(x)都是整數(shù).
分析:由題意函數(shù)f(x)=
1
n
x2+ax+b對任意整數(shù)x,f(x)都是整數(shù),則可令g(x)=f(x+1)-f(x),化簡后得
2
n
x+
1
n
+a,為整數(shù);同理,g(x+1)-g(x)=
2
n
也是整數(shù),所以,n=1或2時,f(x)都是整數(shù).
解答:解:設函數(shù)f(x)=
1
n
x2+ax+b對任意整數(shù)x,f(x)都是整數(shù),
則g(x)=f(x+1)-f(x),
=[
1
n
(x+1)2+a(x+1)+b]-[
1
n
x2+ax+b],
=
2
n
x+
1
n
+a,也為整數(shù),
則,g(x+1)-g(x)=
2
n
也是整數(shù),
所以,n=1或2,
當n=1時,取整數(shù)a、b,則f(x)=x2+ax+b對任意整數(shù)x,f(x)都是整數(shù),
當n=2時,取a=
1
2
,b為整數(shù),則f(x)=
1
2
x2+
1
2
x+b=
1
2
x(x+1)+b,對于任意整數(shù)x,f(x)都是整數(shù).
綜上所述,n=1或2.
點評:本題主要考查了含字母系數(shù)的二次函數(shù),討論g(x)=f(x+1)-f(x)及g(x+1)-g(x)都是整數(shù),是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

試求出所有滿足下列條件的正整數(shù)a,b,c,d,其中1<a<b<c<d,且abcd-1是(a-1)•(b-1)•(c-1)•(d-1)的整數(shù)倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

是否存在這樣一個滿足下列條件的正整數(shù),當它加上98時是一個完全平方數(shù),當它加上121時是另一個完全平方數(shù),若存在,請求出該數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

求滿足下列條件的正整數(shù)n的所有可能值:對這樣的n,能找到實數(shù)a、b,使得函數(shù)f(x)=
1
n
x2+ax+b對任意整數(shù)x,f(x)都是整數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省宜昌市夷陵中學高一數(shù)奧班選拔數(shù)學試卷(解析版) 題型:解答題

試求出所有滿足下列條件的正整數(shù)a,b,c,d,其中1<a<b<c<d,且abcd-1是(a-1)•(b-1)•(c-1)•(d-1)的整數(shù)倍.

查看答案和解析>>

同步練習冊答案