【題目】補(bǔ)全解答過(guò)程:

1)如圖,線段AC=4,線段BC=9,點(diǎn)MAC的中點(diǎn),在CB上取一點(diǎn)N,CNNB=1:2,求MN的長(zhǎng).

解:∵MAC的中點(diǎn),AC=4,

MC= (填線段名稱(chēng))= ,

又因?yàn)?/span>CNNB=12,BC=9,

CN= (填線段名稱(chēng))=

MN= (填線段名稱(chēng))+ (填線段名稱(chēng))=5

MN的長(zhǎng)為5

2)已知:如圖,直線ABCD,直線EF與直線ABCD分別交于點(diǎn)G,H;GM平分∠FGB,∠360°.求∠1的度數(shù).

解:∵EFCD交于點(diǎn)H,(已知)

∴∠3=∠4.(

∵∠360°,(

∴∠460°

ABCDEFAB,CD交于點(diǎn)GH,(已知)

∴∠4+FGB180°.(

∴∠FGB

GM平分∠FGB,(已知)

∴∠1 °.(角平分線的定義)

【答案】1AC;2;BC;3;MCNC;(2)對(duì)頂角相等;已知;兩直線平行,同旁?xún)?nèi)角互補(bǔ);120°;60

【解析】

(1) 根據(jù)線段中點(diǎn)的性質(zhì),可得MC的長(zhǎng),根據(jù)線段長(zhǎng)度的比,可得CN的長(zhǎng),根據(jù)線段的和差,可得答案;

(2) 依據(jù)對(duì)頂角相等以及平行線的性質(zhì),即可得到∠4=60°,∠FGB=120°,再根據(jù)角平分線的定義,即可得出∠1=60°.

1 解:∵MAC的中點(diǎn),AC=4
MC=AC=2,
又因?yàn)?/span>CNNB=12,BC=9
NC=BC=3
MN=MC+NC=5
MN的長(zhǎng)為5
故答案為:AC;2;BC3;MCNC

2 解:∵EFCD交于點(diǎn)H,(已知)
∴∠3=4.(對(duì)頂角相等)
∵∠3=60°,(已知)
∴∠4=60°.
ABCD,EFAB,CD交于點(diǎn)GH,(已知)
∴∠4+FGB=180°.(兩直線平行,同旁?xún)?nèi)角互補(bǔ))
∴∠FGB=120°.
GM平分∠FGB,(已知)
∴∠1=60°.(角平分線的定義)
故答案為:對(duì)頂角相等;已知;兩直線平行,同旁?xún)?nèi)角互補(bǔ);120°;60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,

(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù)   ;

(2)|5﹣3|表示53之差的絕對(duì)值,實(shí)際上也可理解為53兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動(dòng)點(diǎn)PO點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;

(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問(wèn)當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,OE平分AOD,OFOC,

1圖中AOF的余角是 把符合條件的角都填出來(lái);

2如果AOC=160°,那么根據(jù) 可得BOD= 度;

3如果1=32°,求2和3的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信運(yùn)動(dòng)和騰訊公益推出了一個(gè)愛(ài)心公益活動(dòng):一天中走路若步數(shù)達(dá)到10000步及以上,則可通過(guò)微信運(yùn)動(dòng)和騰訊基金會(huì)向公益活動(dòng)捐款,每步可捐0.0002元;若步數(shù)在10000步以下,則不能參與愛(ài)心公益捐款.

1)某天小齊的步數(shù)為15000步,求他這天為愛(ài)心公益可捐款多少錢(qián)?

2)己知甲、乙、丙三人某天通過(guò)步數(shù)共捐款8.4元,且甲的步數(shù):乙的步數(shù):丙的步數(shù),求這天甲走了多少步?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB30°,點(diǎn)MN分別在邊OA、OB上,且OM2,ON6,點(diǎn)P、Q 分別在邊OB、OA上,則MP+PQ+QN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了比較市場(chǎng)上甲、乙兩種電子鐘每日走時(shí)誤差的情況,從這兩種電子鐘中,各隨機(jī)抽取10臺(tái)進(jìn)行測(cè)試,兩種電子鐘走時(shí)誤差的數(shù)據(jù)如下表(單位:秒):

編號(hào)

類(lèi)型

甲種電子鐘

1

-3

-4

4

2

-2

2

-1

-1

2

乙種電子鐘

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的平均數(shù);

(2) 計(jì)算甲、乙兩種電子鐘走時(shí)誤差的方差;

(3) 根據(jù)經(jīng)驗(yàn),走時(shí)穩(wěn)定性較好的電子鐘質(zhì)量更優(yōu).若兩種類(lèi)型的電子鐘價(jià)格相同,請(qǐng)問(wèn):你買(mǎi)哪種電子鐘?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有3名老師決定帶領(lǐng)名小學(xué)生去植物園游玩,有兩家旅行社可供選擇,甲旅行社的收費(fèi)標(biāo)準(zhǔn)為老師全價(jià),學(xué)生七折優(yōu)惠;而乙旅行社不分老師和學(xué)生一律八折優(yōu)惠,這兩家旅行社全價(jià)都是每人500.

1)用代數(shù)式表示這3位老師和名學(xué)生分別在甲、乙兩家旅行社的總費(fèi)用;

2)如果這兩家旅行社的總費(fèi)用一樣,那么老師可以帶幾名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公共交通收費(fèi)如下:

公交票價(jià)

里程(千米)

票價(jià)(元)

刷卡優(yōu)惠后付款(元)

0-10

2

1

10-15

3

1.5

15-20

4

2

20-25

5

2.5

25-30

6

3

以后每增加5千米

增加1

增加0.5

地鐵票價(jià)

里程(千米)

票價(jià)(元)

0-6

3

6-12

4

12-22

5

22-32

6

32-52

7

52-72

8

以后每增加20千米

增加1

(公交票價(jià)10千米(含)內(nèi)2元,不足10千米按10千米計(jì)算,其他里程類(lèi)同;地鐵票價(jià)6千米(含)內(nèi)3元,不足6千米按6千米計(jì)算,其他里程類(lèi)同)

1)張阿姨周日去看望父母,可是張阿姨忘了帶一卡通,請(qǐng)你幫助張阿姨思考兩個(gè)問(wèn)題:

若到父母家無(wú)論乘公交車(chē)還是地鐵距離都是24千米,選擇哪種公交交通工具費(fèi)用較少?

若只用10元錢(qián)乘坐公交或地鐵,選擇哪種公共交通工具乘坐的里程更遠(yuǎn)?

2)張阿姨下周日計(jì)劃使用一卡通刷卡乘公共交通到景點(diǎn)游玩,若里程大于35千米且小于120千米,公交、地鐵均可直達(dá).請(qǐng)問(wèn):選擇公交還是選擇地鐵出行更省錢(qián)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】、兩地相距,甲、乙兩車(chē)分別沿同一條路線從地出發(fā)駛往地,已知甲車(chē)的速度為,乙車(chē)的速度為,甲車(chē)先出發(fā)后乙車(chē)再出發(fā),乙車(chē)到達(dá)地后再原地等甲車(chē).

(1)求乙車(chē)出發(fā)多長(zhǎng)時(shí)間追上甲車(chē)?

(2)求乙車(chē)出發(fā)多長(zhǎng)時(shí)間與甲車(chē)相距

查看答案和解析>>

同步練習(xí)冊(cè)答案