(2013•郴州)如圖,點D、E分別在線段AB,AC上,AE=AD,不添加新的線段和字母,要使△ABE≌△ACD,需添加的一個條件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只寫一個條件即可).
分析:由題意得,AE=AD,∠A=∠A(公共角),可選擇利用AAS、SAS進行全等的判定,答案不唯一.
解答:解:添加∠B=∠C.
在△ABE和△ACD中,∵
∠A=∠A
∠B=∠C
AE=AD
,
∴△ABE≌△ACD(AAS).
故答案可為:∠B=∠C.
點評:本題考查了全等三角形的判定,屬于開放型題目,解答本題需要同學們熟練掌握三角形全等的幾種判定定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•郴州)如圖,已知BE∥DF,∠ADF=∠CBE,AF=CE,求證:四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•郴州)如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點.將Rt△ABC沿CD折疊,使B點落在AC邊上的B′處,則∠ADB′等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•郴州)如圖,AB是⊙O的直徑,點C是圓上一點,∠BAC=70°,則∠OCB=
20
20
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•郴州)如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設(shè)PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關(guān)系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數(shù)關(guān)系式.x為何值時,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•郴州)如圖,在直角梯形AOCB中,AB∥OC,∠AOC=90°,AB=1,AO=2,OC=3,以O(shè)為原點,OC、OA所在直線為軸建立坐標系.拋物線頂點為A,且經(jīng)過點C.點P在線段AO上由A向點O運動,點Q在線段OC上由C向點O運動,QD⊥OC交BC于點D,OD所在直線與拋物線在第一象限交于點E.
(1)求拋物線的解析式;
(2)點E′是E關(guān)于y軸的對稱點,點Q運動到何處時,四邊形OEAE′是菱形?
(3)點P、Q分別以每秒2個單位和3個單位的速度同時出發(fā),運動的時間為t秒,當t為何值時,PB∥OD?

查看答案和解析>>

同步練習冊答案