分析 根據(jù)拋物線的圖象,數(shù)形結(jié)合,逐一解析判斷,即可解決問題.
解答 解:∵拋物線開口向上,
∴a>0,b<0;由圖象知c<0,
∴abc>0,故①錯誤;
∵拋物線的對稱軸為x=2,
∴-$\frac{2a}$=2,b=-4a,
∴4a+b=0,故②正確;
∵拋物線y=ax2+bx+c與x軸有兩個交點,對稱軸是x=2,與x軸的一個交點是(-1,0),
∴拋物線與x軸的另一個交點是(5,0);故③正確;
∵對稱軸方程為 x=2,
∴(-2,y1)可得(6,y1)
∵(5,y2)在拋物線上,
∴由拋物線的對稱性及單調(diào)性知:y1>y2,故④錯誤;
綜上所述②③正確.
故答案為:②③.
點評 此題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,拋物線的單調(diào)性、對稱性及其應(yīng)用問題;靈活運用有關(guān)知識來分析是解題關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 字母A | B. | 字母B | C. | 字母D | D. | 字母F |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 150° | B. | 135° | C. | 120° | D. | 105° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com