【題目】已知在Rt△ABC中,∠C=90°,AB =10, BC: AC=3:4, 則BC=_______, AC=________

【答案】 6 8

【解析】仔細(xì)分析題目已知條件,BC、AC邊均為△ABC的直角邊,利用勾股定理解題即可.

∵BC:AC=3:4,∴AC=4x

已知在△ABC中,∠C=90°

根據(jù)勾股定理列方程:(3x)2+(4x)2=102

解得x=2,

∴BC=6

AC=8

故答案為:6,8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于任意三點(diǎn)A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的覆蓋矩形.點(diǎn)A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.

(1)已知A(2,3),B(5,0),C( 2).

①當(dāng)時,點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為

②若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;

(2)已知點(diǎn)D(1,1),點(diǎn)E(, ),其中點(diǎn)E是函數(shù)的圖像上一點(diǎn),⊙P是點(diǎn)O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】比較大小:﹣(﹣52__|62|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程ax2+3x+20a0)的有個根是1,則a_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上依次有A、B、C三個港口,A、B兩港相距30千米,B、C兩港相距90千米.甲、乙兩船同時分別從A、B港口出發(fā),沿直線勻速駛向C港,最終達(dá)到C港.甲0.5小時到達(dá)B港,此時兩船相距15千米.

求:(1)甲船何時追上乙,此時乙離C港多遠(yuǎn)?

(2)何時甲乙兩船相距10千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F是等邊△ABC的邊BC延長線上一點(diǎn),以CF為邊,作菱形CDEF,使菱形CDEF與等邊△ABC在BC的同側(cè),且CD∥AB,連結(jié)BE.

(1)如圖①,若AB=10,EF=8,請計算△BEF的面積;
(2)如圖②,若點(diǎn)G是BE的中點(diǎn),連接AG、DG、AD.試探究AG與DG的位置和數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是(

A. 3x+6y9xyB. a2a20

C. 23x+2)=6x+2D. ﹣(3x2y)=﹣3x+2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷量的相關(guān)信息如下表:

時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進(jìn)價為每件30元,設(shè)銷售該商品每天的利潤為y元。

(1)求出y與x的函數(shù)關(guān)系式;

(2)問銷售該商品第幾天時,當(dāng)天的銷售利潤最大?最大利潤是多少?

(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于4800元?請直接寫出結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)M是直線y=2x+3上的動點(diǎn),過點(diǎn)M作MN垂直于x軸于點(diǎn)N,y軸上是否存在點(diǎn)P,使△MNP為等腰直角三角形,請寫出符合條件的點(diǎn)P的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案