分析 過點A作AD⊥y軸于點D,則△AOD∽△OBC,由相似三角形的性質可得出$\frac{AD}{OC}$=$\frac{OD}{BC}$=$\sqrt{\frac{{S}_{△AOD}}{{S}_{△OBC}}}$,再根據(jù)反比例函數(shù)系數(shù)k的幾何意義即可得出SAOD=$\frac{1}{2}$×4=2、SOBC=$\frac{1}{2}$k2,結合三角形的面積公式以及S△ABC=7.5即可得出關于|k|的一元二次方程,解之即可得出|k|的值,結合k>0即可得出結論.
解答 解:過點A作AD⊥y軸于點D,如圖所示.
∵AD⊥y軸,BC⊥x軸,
∴AD∥OC,∠ADO=∠OCB=90°,
∴∠OAD=∠BOC,
∴△AOD∽△OBC,
∴$\frac{AD}{OC}$=$\frac{OD}{BC}$=$\sqrt{\frac{{S}_{△AOD}}{{S}_{△OBC}}}$.
∵SAOD=$\frac{1}{2}$×4=2,SOBC=$\frac{1}{2}$k2,
∴$\frac{AD}{OC}$=$\sqrt{\frac{{S}_{△AOD}}{{S}_{△OBC}}}$=$\frac{2}{|k|}$,
∴SAOC=$\frac{1}{2}$OC•OD=$\frac{1}{2}$$\frac{|k|}{2}$AD•OD=|k|.
∵S△ABC=SOBC+SOBC=$\frac{1}{2}$k2+|k|=7.5,
解得:|k|=3或|k|=-5(舍去),
∵k>0,
∴k=3.
故答案為:3.
點評 本題考查了反比例函數(shù)系數(shù)k的幾何意義、相似三角形的判定與性質以及解一元二次方程,根據(jù)三角形的面積公式找出關于|k|的一元二次方程是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (79+0.8)2 | B. | (70+9.8)2 | C. | (80-0.2)2 | D. | (100-20.2)2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{AE}{AC}=\frac{1}{2}$ | B. | $\frac{DE}{BC}$=$\frac{1}{2}$ | ||
C. | $\frac{△ADE的面積}{△ABC的面積}=\frac{1}{3}$ | D. | $\frac{△ADE的周長}{△ABC的周長}=\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1:4 | B. | 1:3 | C. | 1:2 | D. | 1:1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com