【題目】如圖:
(1)(問題背景)如圖1,等腰△ABC,AB=AC,∠BAC=120°,則=________.
(2)(遷移應(yīng)用)如圖2,△ABC和△ABE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同-條直線上,連結(jié)BD.求線段AD,BD,CD之間的數(shù)量關(guān)系式;
(3)(拓展延伸)如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連結(jié)AE并延長交BM于點(diǎn)F,連結(jié)CE, CF.若AE=4,CE=1.求BF的長.
【答案】(1);(2)CD=AD+BD;(3)2.
【解析】
問題背景:作AD⊥BC于D,根據(jù)等腰三角形的性質(zhì)得到BD=CD,根據(jù)三角形內(nèi)角和定理求出∠ABC,根據(jù)余弦的定義計(jì)算即可;
遷移應(yīng)用:證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)得到BD=CE,由問題背景得到CD、AD、BD的關(guān)系;
拓展延伸:作BG⊥AE于G,連接BE.由BM垂直平分CE,可得∠EBF=∠CBF,再根據(jù)AB=BE,BG⊥AE,可得∠ABG=∠EBG,進(jìn)而得出∠GBF=∠ABC=60°,在四邊形BCEG中,求得∠CEG=120°,得到∠CEF=60°,依據(jù)FE=FC,得到△EFC是等邊三角形,由AE=4,EC=EF=1,可得AG=GE=2,FG=3,再根據(jù)在Rt△BGF中,∠BFG=30°,即可得到BF.
問題背景:如圖1,作AD⊥BC于D,
∵AB=AC,∠BAC=120°,
∴BD=CD,∠ABC=30°,
cosB=,即,
∴BC=AB,即,
故答案為;
遷移應(yīng)用:如圖2,∵∠BAC=∠DAE,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
∴BD=CE,
由問題背景可知,DE=AD,
∴CD=DE+EC=AD+BD;
拓展延伸:證明:如圖3,作BG⊥AE于G,連接BE,
∵E、C關(guān)于BM對(duì)稱,
∴BC=BE,FE=FC,BF⊥CE,
∴∠EBF=∠CBF,
∵在菱形ABCD中,AB=BC,∠ABC=120°,
∴AB=BE,又BG⊥AE,
∴∠ABG=∠EBG,
∴∠EBG+∠EBF=∠ABC=60°,
∴四邊形BNEG中,∠CEG=360°-90°-90°-60°=120°,
∴∠CEF=60°,又FE=FC,
∴△EFC是等邊三角形,
∵AE=4,EC=EF=1,
∴AG=GE=2,FG=3,
在Rt△BGF中,∠BFG=30°,
∴BF==2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于兩點(diǎn),是直線上一動(dòng)點(diǎn),⊙的半徑為2.
(1)判斷原點(diǎn)與⊙的位置關(guān)系,并說明理由;
(2)當(dāng)⊙與軸相切時(shí),求出切點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:形如y=|G|(G為用自變量表示的代數(shù)式)的函數(shù)叫做絕對(duì)值函數(shù).
例如,函數(shù)y=|x﹣1|,y=,y=|﹣x2+2x+3|都是絕對(duì)值函數(shù).
絕對(duì)值函數(shù)本質(zhì)是分段函數(shù),例如,可以將y=|x|寫成分段函數(shù)的形式:.
探索并解決下列問題:
(1)將函數(shù)y=|x﹣1|寫成分段函數(shù)的形式;
(2)如圖1,函數(shù)y=|x﹣1|的圖象與x軸交于點(diǎn)A(1,0),與函數(shù)y=的圖象交于B,C兩點(diǎn),過點(diǎn)B作x軸的平行線分別交函數(shù)y=,y=|x﹣1|的圖象于D,E兩點(diǎn).求證△ABE∽△CDE;
(3)已知函數(shù)y=|﹣x2+2x+3|的圖象與y軸交于F點(diǎn),與x軸交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),點(diǎn)P在函數(shù)y=|﹣x2+2x+3|的圖象上(點(diǎn)P與點(diǎn)F不重合),PH⊥x軸,垂足為H.若△PMH與△MOF相似,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)學(xué)生多樣化發(fā)展,某校組織開展了社團(tuán)活動(dòng),分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類社團(tuán)(要求人人參與社團(tuán),每人只能選擇一項(xiàng)).為了解學(xué)生喜愛哪種社團(tuán)活動(dòng),學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求體育社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校有3000名學(xué)生,請(qǐng)估計(jì)喜歡文學(xué)類社團(tuán)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,點(diǎn)E,F分別是BC,CD的中點(diǎn),連結(jié)BF,DE,則圖中陰影部分的面積是________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級(jí)”的扇形的圓心角為____度;
(3)組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小夏同學(xué)從家到學(xué)校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:
公交車用時(shí) 頻數(shù) 公交車路線 | 總計(jì) | ||||
59 | 151 | 166 | 124 | 500 | |
43 | 57 | 149 | 251 | 500 |
據(jù)此估計(jì),早高峰期間,乘坐線路“用時(shí)不超過35分鐘”的概率為__________,若要在40分鐘之內(nèi)到達(dá)學(xué)校,應(yīng)盡量選擇乘坐__________(填或)線路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)都在邊長為1的小正方形組成的網(wǎng)格的格點(diǎn)上,以點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系,回答下列問題:
(1)將△ABC先向上平移5個(gè)單位,再向右平移1個(gè)單位得到△A1B1C1,畫出△A1B1C1,并直接寫出A1的坐標(biāo) ;
(2)將△A1B1C1繞點(diǎn)(0,﹣1)順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2,畫出A2B2C2;
(3)觀察圖形發(fā)現(xiàn),A2B2C2是由△ABC繞點(diǎn) 順時(shí)針旋轉(zhuǎn) 度得到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論正確的是( 。
A.當(dāng)x<2時(shí),y隨x增大而增大B.a-b+c<0
C.拋物線過點(diǎn)(-4,0)D.4a+b=0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com