【題目】如圖,在直角三角形ABC中,∠ACB90°,AC3,BC4,點P在邊AB上,∠CPB的平分線交邊BC于點D,DECP于點E,DFAB于點F.當(dāng)PEDBFD的面積相等時,BP的值為( 。

A.B.C.D.

【答案】D

【解析】

根據(jù)勾股定理得到AB5,根據(jù)角平分線的性質(zhì)得到DEDF,根據(jù)全等三角形的性質(zhì)得到BFPF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解:∵在RtABC中,∠ACB90°AC3,BC4,

AB5,

PD平分∠BPC,DFPBDEPC,

DEDF

RtPDFRtPDE中,

RtPDFRtPDEHL),

SPDFSPDE

當(dāng)PEDBFD的面積相等時,

SPDFSBDF

BFPF,

BDPD,

∴∠B=∠BPD=∠CPD

∵∠BFD=∠ACB90°,

∴△BDF∽△BAC,

,

,

∵∠PCD=∠BCP,

∴△BCP∽△PCD

,

PC

CD,

BD,

PB

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCAB=AC
1)作圖:在AC上有一點D,延長BD,并在BD的延長線上取點E,使AE=AB,連AE,作∠EAC的平分線AF,AFDE于點F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
2)在(1)的條件下,連接CF,求證:∠BAC=BFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=12,AC=16,點D為邊BC的中點,DEBC交邊AC于點E,點P為射線AB上的一動點,點Q為邊AC上的一動點,且∠PDQ=90°.

(1)求ED、EC的長;

(2)若BP=2,求CQ的長;

(3)若線段PQ與線段DE的交點為F,當(dāng)△PDF為等腰三角形時,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:

如圖1,ABC中,∠ACB=90°,點DAB上,且∠BAC=2DCB,求證:AC=AD.

小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:

方法1:如圖2,作AE平分∠CAB,與CD相交于點E.

方法2:如圖3,作∠DCF=DCB,與AB相交于點F.

(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.

用學(xué)過的知識或參考小明的方法,解決下面的問題:

(2)如圖4,ABC中,點DAB上,點EBC上,且∠BDE=2ABC,點FBD上,且∠AFE=BAC,延長DC、FE,相交于點G,且∠DGF=BDE.

①在圖中找出與∠DEF相等的角,并加以證明;

②若AB=kDF,猜想線段DEDB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形ABCD中,AB=3,BC=4,動點P從點A開始按A→B→C→D的方向運動到點D.如圖,設(shè)動點P所經(jīng)過的路程為x,APD的面積為y.(當(dāng)點P與點AD重合時,y=0)

(1)寫出yx之間的函數(shù)解析式;

(2)畫出此函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了預(yù)測本校九年級男生畢業(yè)體育測試達標(biāo)情況,隨機抽取該年級部分男生進行了一次測試(滿分50分,成績均記為整數(shù)分),并按測試成績m(單位:分)分成四類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

(1)求本次抽取的樣本容量和扇形統(tǒng)計圖中A類所對的圓心角的度數(shù);

(2)若該校九年級男生有500名,D類為測試成績不達標(biāo),請估計該校九年級男生畢業(yè)體育測試成績能達標(biāo)的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動點PA點出發(fā),沿AB方向以每秒5個單位長度的速度向B點勻速運動,動點QC點同時出發(fā),以相同的速度沿CA方向向A點勻速運動,當(dāng)點P運動到B點時,P、Q兩點同時停止運動,以PQ為邊作正PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正QCN,設(shè)點P運動時間為t秒.

(1)求cosA的值;

(2)當(dāng)PQMQCN的面積滿足SPQM=SQCN時,求t的值;

(3)當(dāng)t為何值時,PQM的某個頂點(Q點除外)落在QCN的邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=15,AC=13,BC邊上高AD=12,試求△ABC周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從百貨大樓出發(fā)負責(zé)送貨,向東走了2千米到達小明家,繼續(xù)向東走了4千米到達小紅家,然后向西走了9千米到達小剛家,最后返回百貨大樓.

1)以百貨大樓為原點,向東為正方向,1個單位長度表示1千米,請你在數(shù)軸上標(biāo)出小明、小紅、小剛家的位置;

2)小明家與小剛家相距多遠?

3)若貨車每千米耗油0.5升,那么這輛貨車共耗油多少升?

查看答案和解析>>

同步練習(xí)冊答案