【題目】如圖所示的益智玩具由一塊主板AB和一個支撐架CD組成,其側(cè)面示意圖如圖1所示,測得AB⊥BD,AB=40cm,CD=25cm,點CAB的中點.現(xiàn)為了方便兒童操作,需調(diào)整玩具的擺放,將AB繞點B順時針旋轉(zhuǎn),CD繞點C旋轉(zhuǎn),同時點D做水平滑動(如圖2),當點C1BD的距離為10cm時停止運動,求點A經(jīng)過的路徑的長和點D滑動的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1732, ≈4583,π≈3142)

【答案】42cm,25cm

【解析】

首先利用勾股定理得出BD的長,再過點C1C1HBD1于點H,進而得出BH=10cm,求出∠ABC1=60°,利用弧長公式求出點A經(jīng)過的路徑的長,再求出D1C1=25cmC1H=10cm,進而得出D1HBD1的長,即可得出答案.

AB=40,點CAB的中點,

BC=AB=20cm,

ABBD,

∴∠CBD=90°,

RtBCD中,BC=20cm,DC=25cm,

BD===15cm),

過點C1C1HBD1于點H

則∠C1HD=C1HD1=90°,

RtBC1H中,BC1=20cmC1H=10cm,

∴∠C1BH=30°,故BH=10cm,

則∠ABC1=60°,

故點A經(jīng)過的路徑的長為:≈42m),

RtD1C1H中,D1C1=25cm,C1H=10cm,

D1H==cm),

BD1=BH+HD1=10+5≈17.32+22.915=40.235cm),

∴點D滑動的距離為:BD1-BD=40.235-15=25.235≈25cm),

答:點D滑動的距離為25m,點A經(jīng)過的路徑的長為42m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】等腰中,,作的外接圓⊙O.

1)如圖1,點上一點(不與AB重合),連接AD、CD、AO,記的交點為.

①設(shè),若,請用含的式子表示;

②當時,若,求的長;

2)如圖2,點上一點(不與B、C重合),當BC=AB,AP=8時,設(shè),求為何值時,有最大值?并請直接寫出此時⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學生會想知道學生對這個提議的了解程度,隨機抽取部分學生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學生共有   名,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為   ;請補全條形統(tǒng)計圖;

2)若該校共有學生1200人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解””和“基本了解”程度的總?cè)藬?shù);

3)“剪刀石頭布”比賽時雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請用樹狀圖或列表法求兩人打平的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3幅乒乓球拍和2幅羽毛球拍共需204元.

(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;

(2)學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,已知點A80)和點B0,6),點CAB的中點,點P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點P的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,,它們依次交直線ab于點A、B、C和點D、E、F.

1)如果,,,求DE的長.

2)如果,,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點A、D不重合),射線PEBC的延長線交于點Q

1)求證:

2)過點EPB于點F,連結(jié)AF,當時,①求證:四邊形AFEP是平行四邊形;

②請判斷四邊形AFEP是否為菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE∥BC,EF∥AB.

(1)求證:△ADE∽△EFC;

(2)如果AB=6,AD=4,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y的圖象交于A、B兩點,且A點坐標為(﹣21),一次函數(shù)交x軸于點C

1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;

2)求△AOB的面積;

3)直接寫出使反比例函數(shù)大于一次函數(shù)的x的取值范圍.

查看答案和解析>>

同步練習冊答案