【題目】某班數(shù)學(xué)興趣小組進(jìn)行了如下探究:(1)如圖①,若四邊形ABCD是矩形,對(duì)角線AC、BD交點(diǎn)為P,過點(diǎn)P作PQ⊥BC于點(diǎn)Q,連結(jié)DQ交AC于點(diǎn)P1,過點(diǎn)P1作P1Q1⊥BC于點(diǎn)Q1,已知AB=CD=a,則PQ= ,P1Q1= .(用含a的代數(shù)式表示)
(2)如圖②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于點(diǎn)P,過點(diǎn)P作PQ⊥BC于點(diǎn)Q.已知AB=a,CD=b,請(qǐng)用含a、b的代數(shù)式表示線段PQ的長(zhǎng),寫出你的解題過程.
(3)如圖③,在直角坐標(biāo)系xOy中,梯形ABCD的腰BC在x軸正半軸上(點(diǎn)B與原點(diǎn)O重合),AB∥CD,∠ABC=60°,AC、BD交于點(diǎn)P,過點(diǎn)P作PQ∥CD交BC于點(diǎn)Q,連結(jié)AQ交BD于點(diǎn)P1,過點(diǎn)P1作P1Q1∥CD交BC于點(diǎn)Q1.連結(jié)AQ1交BD于點(diǎn)P2,過點(diǎn)P2作P2Q2∥CD交BC于點(diǎn)Q2,…,已知AB=a,CD=b,則點(diǎn)P1的縱坐標(biāo)為 點(diǎn)Pn的縱坐標(biāo)為 (直接用含a、b、n的代數(shù)式表示)
【答案】(1)a;a;(2);(3);.
【解析】
試題分析:(1)根據(jù)矩形的對(duì)角線互相平分且相等可得BP=PD,再根據(jù)在同一平面內(nèi),垂直于同一直線的兩直線互相平行可得PQ∥CD,然后根據(jù)平行線分線段成比例定理列式求解即可得到PQ,同理求出P1Q1∥CD,然后求出的值,再求出的值,然后根據(jù)平行線分線段成比例定理可得,再代入數(shù)據(jù)進(jìn)行計(jì)算即可求出P1Q1;
(2)先根據(jù)AB∥CD求出,然后求出,再根據(jù)在同一平面內(nèi),垂直于同一直線的兩直線互相平行可得PQ∥CD,然后根據(jù)平行線分線段成比例定理可得,代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;
(3)根據(jù)(2)的結(jié)論依次表示出PQ、P1Q1、P2Q2…PnQn,再根據(jù)兩直線平行,同位角相等求出∠PQC=∠P1Q1C=∠P2Q2C=…∠PnQnC=∠ABC=60°,然后利用60°角的正弦值列式計(jì)算即可得解.
試題解析:(1)∵四邊形ABCD是矩形,
∴BP=PD,
∵PQ⊥BC,
∴PQ∥CD,
∴,
∴PQ=CD=a,
∵P1Q1⊥BC,
∴P1Q1∥CD,
∴,
∴,
又∵,
∴P1Q1=a;
(2)∵AB∥CD,
∴,
∴,
∵AB∥CD,∠ABC=90°,PQ⊥BC,
∴PQ∥CD,
∴,
∴PQ=;
(3)根據(jù)(2)的結(jié)論,PQ=,
P1Q1=,
P2Q2=,
P3Q3=,
…,
依此類推,PnQn=,
∵AB∥CD,PQ∥CD,P1Q1∥CD,P2Q2∥CD,…,
∴AB∥PQ∥P1Q1∥P2Q2∥…∥PnQn∥CD,
∴∠PQC=∠P1Q1C=∠P2Q2C=…∠PnQnC=∠ABC=60°,
∴點(diǎn)P1的縱坐標(biāo)為:P1Q1sin60°=,
點(diǎn)Pn的縱坐標(biāo)為為PnQnsin60°=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.4x32x2=8x6
B.a4+a3=a7
C.(﹣x2)5=﹣x10
D.(a﹣b)2=a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使不等式x﹣1≥2與3x﹣7<8同時(shí)成立的x的整數(shù)值是( )
A.3,4 B.4,5 C.3,4,5 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正方形ABCD繞著點(diǎn)A,按順時(shí)針方向旋轉(zhuǎn)得到正方形AEFG,邊FG與BC交于點(diǎn)H(如圖).試問線段HG與線段HB相等嗎?請(qǐng)先觀察猜想,然后再證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-4x與x軸交于O,A兩點(diǎn),P為拋物線上一點(diǎn),過點(diǎn)P的直線y=x+m與對(duì)稱軸交于點(diǎn)Q.
(1)這條拋物線的對(duì)稱軸是 ,直線PQ與x軸所夾銳角的度數(shù)是 ;
(2)若兩個(gè)三角形面積滿足S△POQ=S△PAQ,求m的值;
(3)當(dāng)點(diǎn)P在x軸下方的拋物線上時(shí),過點(diǎn)C(2,2)的直線AC與直線PQ交于點(diǎn)D,求:①PD+DQ的最大值;②PDDQ的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)多邊形每一個(gè)內(nèi)角都是120,則這個(gè)多邊形的邊數(shù)( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是 (寫出一個(gè)即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com