【題目】如圖,已知一條直線過點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.
(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)過線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?
【答案】(1)y=x+4,B(8,16)(2)存在.點(diǎn)C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)(3)18
【解析】試題分析:(1)首先求得點(diǎn)A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點(diǎn)坐標(biāo);
(2)如圖1,過點(diǎn)B作BG∥x軸,過點(diǎn)A作AG∥y軸,交點(diǎn)為G,然后分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點(diǎn)C的坐標(biāo);
(3)設(shè)M(a,a2),如圖2,設(shè)MP與y軸交于點(diǎn)Q,首先在Rt△MQN中,由勾股定理得MN=a2+1,然后根據(jù)點(diǎn)P與點(diǎn)M縱坐標(biāo)相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.
試題解析:(1)y=x+4,B(8,16)
(2)存在.
過點(diǎn)B作BG∥x軸,過點(diǎn)A作AG∥y軸,交點(diǎn)為G,
∴AG2+BG2=AB2,
∵由A(-2,1),B(8,16)可求得AB2=325
.設(shè)點(diǎn)C(m,0),
同理可得AC2=(m+2)2+12=m2+4m+5,
BC2=(m-8)2+162=m2-16m+320,
①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;
②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;
③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,
∴點(diǎn)C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)
(3)設(shè)M(a,a2),
設(shè)MP與y軸交于點(diǎn)Q,在Rt△MQN中,
由勾股定理得MN=,
又∵點(diǎn)P與點(diǎn)M縱坐標(biāo)相同,
∴x+4=a2,
∴x= ,
∴點(diǎn)P的橫坐標(biāo)為,
∴MP=a-,
∴MN+3PM=a2+1+3(a-)=-a2+3a+9=- (a-6)2+18,
∵-2≤6≤8,
∴當(dāng)a=6時(shí),取最大值18,
∴當(dāng)M的橫坐標(biāo)為6時(shí),MN+3PM的長(zhǎng)度的最大值是18
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀思考:
小迪在學(xué)習(xí)過程中,發(fā)現(xiàn)“數(shù)軸上兩點(diǎn)間的距離”可以用“表示這兩點(diǎn)數(shù)的差”來表示,探索過程如下:
如圖1所示,線段AB,BC,CD的長(zhǎng)度可表示為:AB=3=4﹣1,BC=5=4﹣(﹣1),CD=3=(﹣1)﹣(﹣4),于是他歸納出這樣的結(jié)論:如果點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,當(dāng)b>a時(shí),AB=b﹣a(較大數(shù)﹣較小數(shù)).
(2)嘗試應(yīng)用:
①如圖2所示,計(jì)算:OE= ,EF= ;
②把一條數(shù)軸在數(shù)m處對(duì)折,使表示﹣19和2019兩數(shù)的點(diǎn)恰好互相重合,則m= ;
(3)問題解決:
①如圖3所示,點(diǎn)P表示數(shù)x,點(diǎn)M表示數(shù)﹣2,點(diǎn)N表示數(shù)2x+8,且MN=4PM,求出點(diǎn)P和點(diǎn)N分別表示的數(shù);
②在上述①的條件下,是否存在點(diǎn)Q,使PQ+QN=3QM?若存在,請(qǐng)直接寫出點(diǎn)Q所表示的數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山西。┪沂∧程O果基地銷售優(yōu)質(zhì)蘋果,該基地對(duì)需要送貨且購(gòu)買量在2000kg﹣5000kg(含2000kg和5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):
方案A:每千克5.8元,由基地免費(fèi)送貨.
方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.
(1)請(qǐng)分別寫出按方案A,方案B購(gòu)買這種蘋果的應(yīng)付款y(元)與購(gòu)買量x(kg)之間的函數(shù)表達(dá)式;
(2)求購(gòu)買量x在什么范圍時(shí),選用方案A比方案B付款少;
(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購(gòu)買盡可能多的這種蘋果,請(qǐng)直接寫出他應(yīng)選擇哪種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),OD⊥OC,過點(diǎn)O作射線OE平分∠BOC.
(1)如圖1,如果∠AOC=50°,依題意補(bǔ)全圖形,寫出求∠DOE度數(shù)的思路(不需要寫出完整的推理過程);
(2)當(dāng)OD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,依題意補(bǔ)全圖形,并求∠DOE的度數(shù)(用含α的代數(shù)式表示);
(3)當(dāng)OD繞點(diǎn)O繼續(xù)順時(shí)針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的邊AB、AC的垂直平分線相交于點(diǎn)P.連接PB、PC,若∠A=70°,則∠PBC的度數(shù)是 ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形AOB中,O為坐標(biāo)原點(diǎn),∠AOB=90°,∠B=30°,若點(diǎn)A在反比例函數(shù)y= (x>0)圖像上運(yùn)動(dòng),那么點(diǎn)B必在函數(shù)( )的圖像上運(yùn)動(dòng).
A B. C. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB,以點(diǎn)O為圓心,適當(dāng)?shù)拈L(zhǎng)為半徑畫弧,交OA于點(diǎn)M,交OB于點(diǎn)N;分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧在∠AOB的內(nèi)部相交于點(diǎn)C;則射線OC為∠AOB的平分線.依據(jù)是___________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號(hào)召,某校開展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)被隨機(jī)抽取的學(xué)生共有多少名?
(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com