【題目】如圖,拋物線 y=﹣x2+x+2 x 軸交于點(diǎn) AB,與 y 軸交于點(diǎn)C.

(1) AB,C的坐標(biāo);

(2)直線 ly=﹣x+2上有一點(diǎn) D(m,﹣2),在圖中畫出直線 l和點(diǎn) D,并判斷四邊形ACBD的形狀,說明理由.

【答案】(1)A(﹣1,0);B(4,0);C(0,2);(2)圖形見解析;四邊形ACBD為矩形.

【解析】

(1)分別代入x=0,y=0求出與之對應(yīng)的y,x的值,進(jìn)而即可得出點(diǎn)A,B,C的坐標(biāo);

(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)D的坐標(biāo)依照題意畫出圖形,設(shè)CDAB于點(diǎn)E利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)E的坐標(biāo),結(jié)合點(diǎn)AB,C的坐標(biāo)可得出ABCD,AB,CD互相平分利用矩形的判定定理即可證出四邊形ACBD為矩形

1)當(dāng)x=0,yx2x+2=2,∴點(diǎn)C的坐標(biāo)為(0,2).

當(dāng)y=0,x2x+2=0,解得x1=﹣1,x2=4,∴點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(4,0).

(2)∵點(diǎn)Dm,﹣2)在直線yx+2上的,∴﹣2m+2,解得m=3,∴點(diǎn)D的坐標(biāo)為(3,﹣2).

依照題意畫出圖形,設(shè)CDAB于點(diǎn)E如圖所示,四邊形ACBD為矩形.理由如下

當(dāng)y=0,x+2=0,解得x,∴點(diǎn)E的坐標(biāo)為(,0).

A(﹣1,0),B(4,0),C(0,2),D(3,﹣2),E,0),∴AB=4﹣(﹣1)=5,CD5,CE,AE(﹣1),∴AEAB,CECD,∴ABCD,AB,CD互相平分∴四邊形ACBD為矩形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB交雙曲線 A,B兩點(diǎn),交x軸于點(diǎn)C,且BC= AB,過點(diǎn)BBMx軸于點(diǎn)M,連結(jié)OA,若OM=3MC,SOAC=8,則k的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F

1)求證:CF是⊙O的切線;

2)若∠F=30°,EB=6,求圖中陰影部分的面積(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包荒山種了44棵蘋果樹.現(xiàn)在進(jìn)入第三年收獲期.收獲時,先隨意摘了5棵樹上的蘋果,稱得每棵樹摘得的蘋果重量如下(單位:千克)35 35 34 39 37

(1)在這個問題中,總體指的是?個體指的是?樣本是?樣本容量是?

(2)試根據(jù)樣本平均數(shù)去估計(jì)總體情況,你認(rèn)為該農(nóng)戶可收獲蘋果大約多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+4 經(jīng)過點(diǎn)A(﹣3,0),點(diǎn) B 在拋物線上,CBx軸,且AB 平分CAO.則此拋物線的解析式是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的動點(diǎn).以BC為邊作正方形BCDE,當(dāng)點(diǎn)C從點(diǎn)A移動至點(diǎn)B時,點(diǎn)D經(jīng)過的路徑長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對應(yīng)點(diǎn)C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校獎勵給王偉和李麗上海世博園門票共兩張,其中一張為指定日門票,另一張為普通日門票。王偉和李麗分別轉(zhuǎn)動下圖的甲、乙兩個轉(zhuǎn)盤(轉(zhuǎn)盤甲被二等分、轉(zhuǎn)盤乙被三等分)確定指定日門票的歸屬,在兩個轉(zhuǎn)盤都停止轉(zhuǎn)動后,若指針?biāo)傅膬蓚數(shù)字之和為 偶數(shù),則王偉獲得指定日門票;若指針?biāo)傅膬蓚數(shù)字之和為奇數(shù),則李麗獲得指定日門票;若指針指向分隔線,則重新轉(zhuǎn)動。你認(rèn)為這個方法公平嗎?請畫樹狀圖或列表,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案