如圖,已知矩形ABCD,AB=,BC=3,在BC上取兩點E、F(E在F左邊),以EF為邊作等邊三角形PEF,使頂點P在AD上,PE、PF分別交AC于點G、H.
(1)求△PEF的邊長;
(2)若△PEF的邊EF在線段BC上移動.試猜想:PH與BE有什么數(shù)量關系?并證明你猜想的結(jié)論.
(1)2(2),證明見解析
【解析】解: (1)過作于
矩形
,即,又
………………1分
是等邊三角形
在中
的邊長為. ……………………………3分
與的數(shù)量關系是:………4分
在中,
…………………………………5分
是等邊三角形
……………………………6分
…………………………………………8分
……………………………………………9分
(1)要求△PEF的邊長,需構造直角三角形,那么就過P作PQ⊥BC于Q.利用∠PFQ的正弦值可求出PF,即△PEF的邊長;
(2)猜想:PH-BE=1.利用∠ACB的正切值可求出∠ACB的度數(shù),再由∠PFE=60°,可得出△HFC是等腰三角形,因此就有BE+EF+CF=BE+PH+2FH=3.再把其中FH用PH表示,化簡即可.
科目:初中數(shù)學 來源: 題型:
45 | 4 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 |
2 |
9 |
8 |
4 |
9 |
4 |
9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com