【題目】已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分別為AC,BC邊上的點(diǎn)(不包括端點(diǎn)),且==m,連結(jié)AE,過點(diǎn)D作DM⊥AE,垂足為點(diǎn)M,延長DM交AB于點(diǎn)F.
(1)如圖1,過點(diǎn)E作EH⊥AB于點(diǎn)H,連結(jié)DH.
①求證:四邊形DHEC是平行四邊形;
②若m=,求證:AE=DF;
(2)如圖2,若m=,求的值.
【答案】(1)①證明見解析;②證明見解析;(2)
【解析】(1)①先判斷出△BHE∽△BAC,進(jìn)而判斷出HE=DC,即可得出結(jié)論;
②先判斷出AC=AB,BH=HE,再判斷出∠HEA=∠AFD,即可得出結(jié)論;
(2)先判斷出△EGB∽△CAB,進(jìn)而求出CD:BE=3:5,再判斷出∠AFM=∠AEG進(jìn)而判斷出△FAD∽△EGA,即可得出結(jié)論.
(1)①證明:∵EH⊥AB,∠BAC=90°,
∴EH∥CA,
∴△BHE∽△BAC,
∴,
∵,
∴,
∴,
∴HE=DC,
∵EH∥DC,
∴四邊形DHEC是平行四邊形;
②∵,∠BAC=90°,
∴AC=AB,
∵,HE=DC,
∴HE=DC,
∴,
∵∠BHE=90°,
∴BH=HE,
∵HE=DC,
∴BH=CD,
∴AH=AD,
∵DM⊥AE,EH⊥AB,
∴∠EHA=∠AMF=90°,
∴∠HAE+∠HEA=∠HAE+∠AFM=90°,
∴∠HEA=∠AFD,
∵∠EHA=∠FAD=90°,
∴△HEA≌△AFD,
∴AE=DF;
(2)如圖,過點(diǎn)E作EG⊥AB于G,
∵CA⊥AB,
∴EG∥CA,
∴△EGB∽△CAB,
∴,
∴,
∵,
∴EG=CD,
設(shè)EG=CD=3x,AC=3y,
∴BE=5x,BC=5y,
∴BG=4x,AB=4y,
∵∠EGA=∠AMF=90°,
∴∠GEA+∠EAG=∠EAG+∠AFM,
∴∠AFM=∠AEG,
∵∠FAD=∠EGA=90°,
∴△FAD∽△EGA,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)完成下面的證明(在括號中填寫推理理由)如圖,已知,,求證:.
證明:因?yàn)?/span>,
所以(________),
所以________(________).
因?yàn)?/span>,
所以________(________).
所以(________).
(2)如圖,、、三點(diǎn)在同一直線上,,,試判斷與的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1═(x>0)的圖象上,點(diǎn)A′與點(diǎn)A關(guān)于點(diǎn)O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點(diǎn)A′.
(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1、y2的圖象上.
①分別求函數(shù)y1、y2的表達(dá)式;
②直接寫出使y1>y2>0成立的x的范圍;
(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,△AA'B的面積為16,求k的值;
(3)設(shè)m=,如圖②,過點(diǎn)A作AD⊥x軸,與函數(shù)y2的圖象相交于點(diǎn)D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點(diǎn)P一定在函數(shù)y1的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.
(1)若1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣2.5表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
(2)若﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問題:
①5表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②若數(shù)軸上A、B兩點(diǎn)之間的距離為9(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,求A、B兩點(diǎn)表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個(gè)小正方形的邊長為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).以頂點(diǎn)都是格點(diǎn)的正方形ABCD的邊為斜邊,向內(nèi)作四個(gè)全等的直角三角形,使四個(gè)直角頂點(diǎn)E,F(xiàn),G,H都是格點(diǎn),且四邊形EFGH為正方形,我們把這樣的圖形稱為格點(diǎn)弦圖.例如,在如圖1所示的格點(diǎn)弦圖中,正方形ABCD的邊長為,此時(shí)正方形EFGH的而積為5.問:當(dāng)格點(diǎn)弦圖中的正方形ABCD的邊長為時(shí),正方形EFGH的面積的所有可能值是_____(不包括5).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程(組)解應(yīng)用題:
為順利通過國家義務(wù)教育均衡發(fā)展驗(yàn)收,我市某中學(xué)配備了兩個(gè)多媒體教室,購買了筆記本電腦和臺(tái)式電腦共120臺(tái),購買筆記本電腦用了7.2萬元,購買臺(tái)式電腦用了24萬元,已知筆記本電腦單價(jià)是臺(tái)式電腦單價(jià)的1.5倍,那么筆記本電腦和臺(tái)式電腦的單價(jià)各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程mx2-2mx+m-2=0.
(1)若方程有兩個(gè)不等實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩實(shí)數(shù)根為x1,x2,且|x1-x2|=1,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC和Rt△DEF中,∠C=∠F=90°,下列條件不能判定Rt△ABC≌Rt△DEF的是( 。
A. AC=DF,∠B=∠EB. ∠A=∠D,∠B=∠E
C. AB=DE,AC=DFD. AB=DE,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市民廣場地面鋪設(shè)地磚,決定采用黑白2種地磚,按如下方案鋪設(shè),首先在廣場中央鋪2塊黑色磚(如圖①),然后在黑色磚的四周鋪上白色磚(如圖②),再在白色磚的四周鋪上黑色磚(如圖③),再在黑色磚的四周鋪上白色磚(如圖④),這樣反復(fù)更換地磚的顏色,按照這種規(guī)律,直至鋪滿整個(gè)廣場,觀察下圖,解決下列問題.
(1)填表
圖形序號數(shù) | ① | ② | ③ | ④ | … |
地磚總數(shù)(包括黑白地磚) | 2 |
(2)按照這種規(guī)律第6個(gè)圖形一共用去地磚多少塊?
(3)按照這種規(guī)律第個(gè)圖形一共用去地磚多少塊?(用含的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com