【題目】如圖,在由邊長都為1的小正方形組成的網(wǎng)格中,點,,均為格點,點,分別為線段,上的動點,且滿足.
(1)線段的長度等于__________;
(2)當線段取得最小值時,請借助無刻度直尺在給定的網(wǎng)格中畫出線段和,并簡要說明你是怎么畫出點Q,P的:_______________________.
【答案】5 取格點.連接,它們相交于點,連接,分別交于點,則線段和即為所求.
【解析】
(1)利用勾股定理求出AB的長即可;(2)要使AQ+PC有最小值,則應(yīng)把AQ與PC轉(zhuǎn)換到一條直線,利用全等三角形可確定∠QBT的位置,連接EF,利用相似三角形可確定T點位置,連接AT交BC于Q,則QT=PC,根據(jù)全等三角形確定∠ACP,據(jù)此即可得出點P、Q的位置.
(1)AB==5.
(2)∵要使AQ+PC有最小值,
∴應(yīng)把AQ與PC轉(zhuǎn)換到一條直線,即使QT=PC,得AQ+PC=AT,
∴作△BQT≌△APC即可,
∴應(yīng)作∠CBT=∠BAC,BT=AC=3,
∴連接BD,則∠CBT=∠BAC,
∵BD=5,
∴要使BT=3,則=,
∴連接EF,則==,即BT=3,
∴連接AT,交BC于Q,則Q點即為所求,
∵△BQT≌△APC,
∴∠BTA=∠ACP,
∴只要作△ABT的全等三角形即可,
∵AC=BT,∠ABT=90°,AB=5,
∴作GA⊥AC,AG=5,則△ABT≌△GAC,
∴連接CG,交AB于P,則∠ACP=∠ATB,則P點即為所求.
故答案為:5;取格點.連接,它們相交于點,連接,分別交于點,則線段和即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=8,連接BC。
(1)尺規(guī)作圖:作弦CD,使CD=BC(點D不與B重合),連接AD;(保留作圖痕跡,不寫作法)
(2)在(1)所作的圖中,求四邊形ABCD的周長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分線交AC于點D,在AB上取點O,以點O為圓心經(jīng)過B、D兩點畫圓分別與AB、BC相交于點E、F(異于點B).
(1)求證:AC是⊙O的切線;
(2)若點E恰好是AO的中點,求的長;
(3)若CF的長為,①求⊙O的半徑長;②點F關(guān)于BD軸對稱后得到點F′,求△BFF′與△DEF′的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年我縣為了創(chuàng)建省級文明縣城,全面推行中小學校“社會主義核心價值觀”進課堂.某校對全校學生進行了檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機抽取若干名學生的檢測結(jié)果作為樣本進行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表和統(tǒng)計圖.
請根據(jù)統(tǒng)計表和統(tǒng)計圖提供的信息,解答下列問題:
(1)本次隨機抽取的樣本容量為__________;
(2)統(tǒng)計表中_________,_________.
(3)若該校共有學生5000人,請你估算該校學生在本次檢測中達到“(優(yōu)秀)”等級的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線。
(1)求頂點坐標,對稱軸;
(2)取何值時, 隨的增大而減?
(3)取何值時, =0; 取何值時, >0; 取何值時, <0 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把有兩邊對應(yīng)相等,且夾角互補(不相等)的兩個三角形叫做“互補三角形”,如圖1,□ABCD中,△AOB和△BOC是“互補三角形”.
(1)寫出圖1中另外一組“互補三角形”_______;
(2)在圖2中,用尺規(guī)作出一個△EFH,使得△EFH和△EFG為“互補三角形”,且△EFH和△EFG在EF同側(cè),并證明這一組“互補三角形”的面積相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了增強學生的環(huán)保意識,某校組織了一次全校2000名學生都參加的“環(huán)保知識”考試,考題共10題.考試結(jié)束后,學校團委隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計圖中,m= ,n= ,“答對8題”所對應(yīng)扇形的圓心角為 度;
(2)將條形統(tǒng)計圖補充完整;
(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com