【題目】已知:二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A.
(1)當a=時,求點A的坐標;
(2)求A點的坐標(只含b的代數(shù)式來表示);
(3)過點A的直線y=x+k與二次函數(shù)的圖象相交于另一點B,當b≥﹣1時,求點B的橫坐標m的取值范圍.
【答案】(1)A(1,0);(2)(﹣,0);(3)m≥3.
【解析】
(1)由二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A,推出△=b2-4a×=b2-2a=0,再根據(jù)a=,代入求出b即可;
(2)令y=0,求出x的值即可得出A點坐標;
(3)構(gòu)建方程組求出點B的橫坐標,利用二次函數(shù)的性質(zhì)即可解決問題;
解:(1)∵二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點,
∴b2﹣4a×=0,
即:b2=2a,
當a=時,b2=1,
又∵b<0,
∴b=﹣1,
∴二次函數(shù)的關系式為:y=x2﹣x+,
當y=0時,x2﹣x+=0,解得:x1=x2=1,
∴點A(1,0),
(2)∵b2=2a,(a>0,b<0),
∴b=﹣
當y=0時,ax2+bx+=0,
∴x===﹣,
∴點A的坐標為(﹣,0);
(3)將點A的坐標代入y=x+k得,k=:
由,解得:x1=﹣,x2=,
∵點A的坐標為(﹣,0);
∴點B的橫坐標m=,
∴m==2()=2()2﹣,
∵2>0,
∴當b<時,m隨的增大而減小,
∵﹣1≤b<0,
∴≤﹣1,
∴m≥2×(﹣1﹣)2﹣=3,
即m≥3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑;
(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y1=﹣x+3與x軸交于點B,與y軸交于點C,拋物y2=ax2+bx+c經(jīng)過點B,C并與x軸交于點A(﹣1,0).
(1)求拋物線解析式,并求出拋物線的頂點D坐標 ;
(2)當y2<0時、請直接寫出x的取值范圍 ;
(3)當y1<y2時、請直接寫出x的取值范圍 ;
(4)將拋物線y2向下平移,使得頂點D落到直線BC上,求平移后的拋物線解析式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸于點,交軸正半軸于點,與過點的直線相交于另一點,過點作軸,垂足為.
(1)求拋物線的解析式.
(2)點是軸正半軸上的一個動點,過點作軸,交直線于點,交拋物線于點.
①若點在線段上(不與點,重合),連接,求面積的最大值.
②設的長為,是否存在,使以點,,,為頂點的四邊形是平行四邊形?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=x2﹣2(m﹣1)x﹣1﹣m
(1)當m=2時,求該拋物線的對稱軸和頂點坐標;
(2)設該拋物線與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點C,且滿足,求這個拋物線的解析式;
(3)在(2)的條件下,是否存在著直線y=kx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k,b應滿足的條件;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超越公司將某品牌農(nóng)副產(chǎn)品運往新時代市場進行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應值如下表:
v(千米/小時) | 75 | 80 | 85 | 90 | 95 |
t(小時) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關于行駛時間t(小時)的函數(shù)表達式;
(2)汽車上午7:30從超越公司出發(fā),能否在上午10:00之前到達新時代市場?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,點E, F分別在BC, BD上,且BE=1,過三點C, E, F作⊙O交CD于點G.
(1)證明∠EFG =90°.
(2)如圖2,連結(jié)AF,當點F運動至點A,F, G三點共線時,求的面積.
(3)在點F整個運動過程中,
①當EF, FG, CG中滿足某兩條線段相等,求所有滿足條件的BF的長.
②連接EG,若時,求⊙O的半徑(請直接寫出答案) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在向貧困地區(qū)捐書活動中全體師生積極捐書.為了解所捐書籍的種類,某同學對部分書籍進行了抽樣調(diào)查,并根據(jù)調(diào)查數(shù)據(jù)繪制了如圖所示不完整統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下面問題:
(1)本次抽樣調(diào)查的書籍有多少本?請通過計算補全條形統(tǒng)計圖;
(2)求出圖中表示科普類書籍的扇形圓心角度數(shù);
(3)本次活動師生共捐書本,請估計有多少本文學類書籍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,求AD:OC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com