【題目】勾股定理是幾何中的一個重要定理.在我國古算書《周髀算經(jīng)》中就有若勾三,股四,則弦五的記載.如圖1是由邊長相等的小正方形和直角三角形構成的,可以用其面積關系驗證勾股定理.圖2是把圖1放入長方形內(nèi)得到的,AB=3,AC=4,點DE,FG,H,I都在長方形KLMJ的邊上,則長方形KLMJ的面積為___

【答案】110

【解析】

延長ABKF于點O,延長ACGM于點P,可得四邊形AOLP是正方形,然后求出正方形的邊長,再求出矩形KLMJ的長與寬,然后根據(jù)矩形的面積公式列式計算即可得解.

如圖,延長ABKF于點O,延長ACGM于點P,則四邊形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+OBF=90°,
又∵直角△ABC,ABC+ACB=90°
∴∠OBF=ACB,
在△OBF和△ACB中,
,
∴△OBF≌△ACB(AAS),
AC=OB,
同理:△ACB≌△PGC,
PC=AB
OA=AP
所以,矩形AOLP是正方形,
邊長AO=AB+AC=3+4=7,
所以,KL=3+7=10,LM=4+7=11,
因此,矩形KLMJ的面積為10×11=110.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一農(nóng)民帶了土豆進城出售,為了方便,他帶了一些零用錢備用,按市場價出售一些土豆后,又降價出售,售出土豆的千克數(shù)與他手中持有的錢數(shù)(含零用錢)的關系如圖.結合圖象回答:

1)農(nóng)民自帶的零錢是多少元?

2)求出降價前之間的函數(shù)關系式;

3)降價后他按每千克1.6元將土豆售完,這時他手中的錢(含零用錢)是86元,那么他一共帶了多少土豆去城里出售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應求,很快銷售完了.商店又去采購第二批同樣款式的書包,進貨單價比第一次高元,商店用了元,所購數(shù)量是第一次的.

1)求第一批采購的書包的單價是多少元?

2)若商店按售價為每個書包元,銷售完這兩批書包,總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高爾夫運動員將一個小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時間(s)滿足二次函數(shù)關系,th的幾組對應值如下表所示:

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

1)求ht之間的函數(shù)關系式(不要求寫t的取值范圍);

2)求小球飛行3s時的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是( )

①如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)

②存在三個實數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c

③如果ac<0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c

④如果ac>0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c

A. B. ①③ C. ②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖表示甲和乙沿相同路線相向行駛,,表示兩人離地行駛的路程(千米)與經(jīng)過的時間(小時)之間的函數(shù)關系.甲先出發(fā),兩地相距90千米.請根據(jù)這個行駛過程中的圖象填空:

1)表示甲離地的距離與時間的關系的圖象是 (填),甲的速度是 ,乙的速度是:

2)甲出發(fā)多少時間兩人恰好相距?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB中,∠ACB=30°,將△ABC繞點C順時針旋轉60°得到△DEC,連接AE.

(1)求證:△ABC≌△AEC;

(2)若AB=AC,試判斷四邊形ACDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在實數(shù)的計算過程中去發(fā)現(xiàn)規(guī)律.

152,而,規(guī)律:若ab0,那么的大小關系是:   

2)對于很小的數(shù)0.1、0.0010.00001,它們的倒數(shù)   ;      .規(guī)律:當正實數(shù)x無限。o限接近于0),那么它的倒數(shù)   

3)填空:若實數(shù)x的范圍是0x2,寫出的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的三邊長分別為

的取值范圍;

的周長為偶數(shù)時,求

為等腰三角形,求

查看答案和解析>>

同步練習冊答案