【題目】高爾夫運(yùn)動(dòng)員將一個(gè)小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度h(m)與它的飛行時(shí)間(s)滿足二次函數(shù)關(guān)系,t與h的幾組對(duì)應(yīng)值如下表所示:
t(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
h(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(1)求h與t之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);
(2)求小球飛行3s時(shí)的高度.
【答案】(1)h與t之間的函數(shù)關(guān)系式為h=﹣5t2+20t;(2)小球飛行3s時(shí)的高度為15米.
【解析】
(1)設(shè)h與t之間的函數(shù)關(guān)系式為h=at2+bt(a≠0),然后再根據(jù)表格代入t=1時(shí),h=15;t=2時(shí),h=20可得關(guān)于a、b的方程組,再解即可得到a、b的值,進(jìn)而可得函數(shù)解析式;
(2)根據(jù)函數(shù)解析式,代入t=3可得h的值;
(1)∵t=0時(shí),h=0,
∴設(shè)h與t之間的函數(shù)關(guān)系式為h=at2+bt(a≠0),
∵t=1時(shí),h=15;t=2時(shí),h=20,
∴
解得
∴h與t之間的函數(shù)關(guān)系式為h=﹣5t2+20t;
(2)小球飛行3秒時(shí),t=3(s),此時(shí)h=﹣5×32+20×3=15(m).
答:小球飛行3s時(shí)的高度為15米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,是的直徑,是的切線,切點(diǎn)為.點(diǎn)為射線上一動(dòng)點(diǎn)(點(diǎn)與不重合),且弦平行于.
求證:是的切線;
設(shè)的半徑為.試問:當(dāng)動(dòng)點(diǎn)在射線上運(yùn)動(dòng)到什么位置時(shí),有?請(qǐng)回答并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);
(2)連接PD,△CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)△CPE是等腰三角形時(shí),請(qǐng)直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型超市投入15000元資金購進(jìn)、兩種品牌的礦泉水共600箱,礦泉水的成本價(jià)和銷售價(jià)如下表所示:
類別/單價(jià) | 成本價(jià)(元/箱) | 銷售價(jià)(元/箱) |
A品牌 | 20 | 32 |
B品牌 | 35 | 50 |
(1)該大型超市購進(jìn)、品牌礦泉水各多少箱?
(2)全部銷售完600箱礦泉水,該超市共獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,為邊上的兩個(gè)點(diǎn),且,.
(1)若,求的度數(shù);
(2)的度數(shù)會(huì)隨著度數(shù)的變化而變化嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于點(diǎn)D;CE平分∠ACB,交AB于點(diǎn)E,交BD于點(diǎn)F.
(1)求證:△BEF是等腰三角形;
(2)求證:BD=(BC+BF).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】安徽某水產(chǎn)養(yǎng)殖戶去年利用“稻蝦混養(yǎng)”使每千克小龍蝦養(yǎng)殖成本降為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)P(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:P=,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示.
(1)求日銷售y與時(shí)間t的函數(shù)關(guān)系式?
(2)設(shè)日銷售利潤為W(元),求W與t之間的函數(shù)表達(dá)式;
(3)日銷售利潤W哪一天最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m).
(1)求B,C的距離.
(2)通過計(jì)算,判斷此轎車是否超速.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com