【題目】高爾夫運(yùn)動(dòng)員將一個(gè)小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時(shí)間(s)滿足二次函數(shù)關(guān)系,th的幾組對(duì)應(yīng)值如下表所示:

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

1)求ht之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);

2)求小球飛行3s時(shí)的高度.

【答案】(1)h與t之間的函數(shù)關(guān)系式為h=﹣5t2+20t;(2)小球飛行3s時(shí)的高度為15米.

【解析】

(1)設(shè)ht之間的函數(shù)關(guān)系式為h=at2+bt(a≠0),然后再根據(jù)表格代入t=1時(shí),h=15;t=2時(shí),h=20可得關(guān)于a、b的方程組,再解即可得到a、b的值,進(jìn)而可得函數(shù)解析式;
(2)根據(jù)函數(shù)解析式,代入t=3可得h的值;

(1)t=0時(shí),h=0,

∴設(shè)ht之間的函數(shù)關(guān)系式為h=at2+bt(a≠0),

t=1時(shí),h=15;t=2時(shí),h=20,

解得

ht之間的函數(shù)關(guān)系式為h=﹣5t2+20t;

(2)小球飛行3秒時(shí),t=3(s),此時(shí)h=﹣5×32+20×3=15(m).

答:小球飛行3s時(shí)的高度為15米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,的直徑,的切線,切點(diǎn)為.點(diǎn)為射線上一動(dòng)點(diǎn)(點(diǎn)不重合),且弦平行于

求證:的切線;

設(shè)的半徑為.試問:當(dāng)動(dòng)點(diǎn)在射線上運(yùn)動(dòng)到什么位置時(shí),有?請(qǐng)回答并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線y=+m經(jīng)過點(diǎn)C,與拋物線的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線CD上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)PPFx軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線解析式并求出點(diǎn)D的坐標(biāo);

(2)連接PD,CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說明理由;

(3)當(dāng)CPE是等腰三角形時(shí),請(qǐng)直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型超市投入15000元資金購進(jìn)、兩種品牌的礦泉水共600箱,礦泉水的成本價(jià)和銷售價(jià)如下表所示:

類別/單價(jià)

成本價(jià)(元/箱)

銷售價(jià)(元/箱)

A品牌

20

32

B品牌

35

50

1)該大型超市購進(jìn)、品牌礦泉水各多少箱?

2)全部銷售完600箱礦泉水,該超市共獲得多少利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,為邊上的兩個(gè)點(diǎn),且.

1)若,求的度數(shù);

2的度數(shù)會(huì)隨著度數(shù)的變化而變化嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于點(diǎn)D;CE平分∠ACB,交AB于點(diǎn)E,交BD于點(diǎn)F.

(1)求證:△BEF是等腰三角形;

2)求證:BD=BC+BF).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】安徽某水產(chǎn)養(yǎng)殖戶去年利用稻蝦混養(yǎng)使每千克小龍蝦養(yǎng)殖成本降為6元,在整個(gè)銷售旺季的80天里,銷售單價(jià)P(元/千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系為:P=,日銷售量y(千克)與時(shí)間第t(天)之間的函數(shù)關(guān)系如圖所示.

(1)求日銷售y與時(shí)間t的函數(shù)關(guān)系式?

(2)設(shè)日銷售利潤為W(元),求Wt之間的函數(shù)表達(dá)式;

(3)日銷售利潤W哪一天最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24mD=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求B,C的距離.

2)通過計(jì)算,判斷此轎車是否超速.

查看答案和解析>>

同步練習(xí)冊(cè)答案