【題目】如圖,把△ABC 繞點 A 順時針旋轉 n 度(0<n<180)后得到△ADE,并使點 D 落在 AC 的延長線上.
(1)若∠B=17°,∠E=55°,求 n;
(2)若 F 為 BC 的中點,G 為 DE 的中點,連 AG、AF、FG,求證:△AFG 為等腰三角形.
【答案】(1)108°(2)證明見解析
【解析】
(1)根據旋轉的性質得到∠ACB=∠E=55°,根據三角形的內角和得到∠
BAC=180°﹣55°﹣17°=108°,于是得到結論;
(2)根據旋轉的性質得到 AB=AD BC=DE,∠B=∠D,根據線段中點的定義得到 BF= BC DG=DE,根據全等三角形的性質即可得到結論.
(1)∵△ADE 是由△ABC 旋轉而來,
∴∠ACB=∠E=55°,
又∵∠B=17°,
∴∠BAC=180°﹣55°﹣17°= 108°,
∵D 落在 AC 延長線上,
∴∠BAC 即為旋轉角,
∴n=108°;
(2)證明:∵△ADE 是由△ABC 旋轉而來,
∴AB=AD BC=DE,∠B=∠D,
∵F、G 分別是 BC、DE 的中點,
∴BF= BC DG= DE,
∴BF=DG,
在△ABF 與△ADG 中
∴△ABF≌△ADG(SAS),
∴AF=AG,
∴△ADF 是等腰三角形.
科目:初中數學 來源: 題型:
【題目】如圖,利用一面院墻,用籬笆圍成一個外形為矩形的花圃,花圃的面積為S平方米,平行于院墻的一邊長為x米.
(1)若院墻可利用最大長度為10米,籬笆長為24米,花圃中間用一道籬笆間隔成兩個小矩形,求S與x之間的函數關系;
(2)在(1)的條件下,若圍成的花圃面積為45平方米,求AB的長;
(3)在(1)的條件下,能否圍成面積比45平方米更大的花圃?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=-x2+2x+3.
(1)求函數圖像的頂點坐標,并畫出這個函數的圖像;
(2)根據圖像,直接寫出:
①當函數值y為正數時,自變量x的取值范圍;
②當-2<x<2時,函數值y的取值范圍;
③若經過點(0,k)且與x軸平行的直線l與y=-x2+2x+3的圖像有公共點,求k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為正方形ABCD的中心,AD=1,BE平分∠DBC交DC于點E,延長BC到點F,使BD=BF,連結DF交BE的延長線于點H,連結OH交DC于點G,連結HC.則以下四個結論中:OH∥BF;②OG:GH=2:1;③GH=;④∠CHF=2∠EBC;⑤CH2=HEHB.正確結論的個數為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(閱讀資料)
同學們,我們學過用配方法解一元二次方程,也可用配方法求代數式的最值.
(1)求4x2+16x+19的最小值.
解:4x2+16x+19=4x2+16x+16+3=4(x+2)2+3
因(x+2)2大于等于0,所以4x2+16x+19大于等于3,即4x2+16x+19的最小值是3.此時,x=﹣2
(2)求﹣m2﹣m+2的最大值
解:﹣m2﹣m+2=﹣(m2+m)+2=﹣
因大于等于0,所以﹣小于等于0,所以﹣
小于等于,即﹣m2﹣m+2的最大值是,此時,m=﹣.
(探索發(fā)現(xiàn))
如圖①,是一張直角三角形紙片,∠B=90°,AB=8,BC=6,小明想從中剪出一個以∠B為內角且面積最大的矩形,經過多次操作發(fā)現(xiàn),當沿著中位線DE、EF剪下時,所得的矩形的面積最大.下面給出了未寫完的證明,請你閱讀下面的證明并寫出余下的證明部分,并求出矩形的最大面積與原三角形面積的比值.
解:在AC上任取點E,作ED⊥BC,EF⊥AB,得到矩形BDEF.設EF=x
易證△AEF∽△ACB,則,,,…
請你寫出剩余部分
(拓展應用)
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點P、N分別在邊AB、AC上,頂點Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數式表示)
(靈活應用)
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個面積最大的矩形(∠B為所剪出矩形的內角),該矩形的面積為 .(直接寫出答案)
(實際應用)
如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經測量AB=70cm,BC=108cm,CD=76cm,且∠B=∠C=60°,木匠徐師傅從這塊余料中裁出了頂點M、N在邊BC上且面積最大的矩形PQMN,該矩形的面積為 .(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,E是正方形ABCD邊AB上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉90°,旋轉后角的兩邊分別與射線BC交于點F和點G.
①線段DB和DG的數量關系是 ;
②寫出線段BE,BF和DB之間的數量關系.
(2)當四邊形ABCD為菱形,∠ADC=60°,點E是菱形ABCD邊AB所在直線上的一點,連接BD、DE,將∠BDE繞點D逆時針旋轉120°,旋轉后角的兩邊分別與射線BC交于點F和點G.
①如圖2,點E在線段AB上時,請?zhí)骄烤段BE、BF和BD之間的數量關系,寫出結論并給出證明;
②如圖3,點E在線段AB的延長線上時,DE交射線BC于點M,若BE=1,AB=2,直接寫出線段GM的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一個小球從斜坡的點O處拋出,小球的拋出路線可以用二次函數y=4x﹣x2刻畫,斜坡可以用一次函數y=x刻畫,下列結論錯誤的是( 。
A. 當小球拋出高度達到7.5m時,小球水平距O點水平距離為3m
B. 小球距O點水平距離超過4米呈下降趨勢
C. 小球落地點距O點水平距離為7米
D. 斜坡的坡度為1:2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com