A. | tan∠ADB=$\sqrt{2}$-1 | B. | ∠DEF=67.5° | C. | ∠AGB=∠BEF | D. | cos∠AGB=$\frac{\sqrt{6}}{4}$ |
分析 連接CE,設(shè)EF與BD相交于點O,根據(jù)軸對稱性可得AB=AE,并設(shè)為1,利用勾股定理列式求出BE,再根據(jù)翻折的性質(zhì)可得DE=BF=BE,再求出BC=1,然后對各選項分析判斷利用排除法求解.
解答 解:如圖,連接CE,設(shè)EF與BD相交于點O,
由軸對稱性得,AB=AE,設(shè)為1,
則BE=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∵點E與點F關(guān)于BD對稱,
∴DE=BF=BE=$\sqrt{2}$,
∴AD=1+$\sqrt{2}$,
∵AD∥BC,AB⊥AD,AB=AE,
∴四邊形ABCE是正方形,
∴BC=AB=1,
∴tan∠ADB=$\frac{AB}{AD}$=$\frac{1}{1+\sqrt{2}}$=$\sqrt{2}$-1,故A錯誤;
∠AEB+22°=45°+22°=67°,
∵BE=BF,∠EBF=∠AEB=45°,
∴∠BFE=$\frac{180°-45°}{2}$=67.5°,
∴∠DEF=∠BFE=67.5°,故B錯誤;
∵AB=AE=BC=1,AD∥BC,AB⊥AD,
∴四邊形ABCE是正方形,
∴∠BAC=∠CBE=45°,
∵點E與點F關(guān)于BD對稱,
∴EF⊥BD,
∵AB⊥AD,
∴∠EOD=∠BAD=90°,
∵∠ADB=∠ODE,
∴∠ABG=∠OED,
∵AD∥BC,
∴∠OED=∠BFE,
∴∠ABG=∠BFE,
∴∠AGB=∠BEF,故C錯誤;
由勾股定理得,OE2=BE2-BO2=($\sqrt{2}$)2-($\frac{\sqrt{4+2\sqrt{2}}}{2}$)2=$\frac{4-2\sqrt{2}}{4}$,
∴OE=$\frac{\sqrt{4-2\sqrt{2}}}{2}$,
∵∠EBG+∠AGB=90°,
∠EBG+∠BEF=90°,
∴∠AGB=∠BEF,
又∵∠BEF=∠DEF
∴cos∠AGB=$\frac{OE}{DE}$=$\frac{\frac{\sqrt{4-2\sqrt{2}}}{2}}{\sqrt{2}}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,故D正確.
故選:D.
點評 本題考查了軸對稱的性質(zhì),解直角三角形,等腰直角三角形的判定與性質(zhì),正方形的判定與性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,設(shè)出邊長為1可使求解過程更容易理解.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3.8×104 | B. | 38×104 | C. | 3.8×105 | D. | 3.8×106 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com