【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=CBD.

(1)求證:CD是⊙O的切線.

(2)過點B作⊙O的切線交CD的延長線于點E,若OB=5,BC=18,求BE的長.

【答案】(1)證明見解析;(2)

【解析】

(1)連接OD,根據(jù)AB所對的角是直角,以及等邊對等角,證明∠ODC=90°,則可以證得;

(2)在直角ODC中利用勾股定理求得CD的長,然后根據(jù)ABC∽△ODC,利用相似三角形的對應(yīng)邊相等即可求解.

(1)證明:連接OD.

AB是直徑,

∴∠BDA=90°,

∴∠ABD+BAD=90°,

OD=OA,

∴∠ODA=OAD,

又∵∠CDA=CBD,

∴∠CDA+ODA=90°,即∠ODC=90°,

ODCD,

CD是⊙O的切線,

(2)OC=BC﹣OB=18﹣5=13,

直角△OCD中,OD=OB=5,

CD=,

BE是圓的切線,

∴∠EBC=90°,

同理∠ODC=90°,

∴∠EBC=ODC,

又∵∠C=C,

∴△EBC∽△ODC,

,即,

解得:BE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與的圖像交于點,與軸和 軸分別交于點和點,且點的橫坐標為.

(1)的值與的長;

(2)若點為線段上一點,且,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平的直角坐標系中,直線軸、軸分別相交于點、,四邊形是正方形,曲線在第一象限經(jīng)過點.求雙曲線表示的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某隧道建設(shè)工程中,需沿方向開山修路,為了加快施工進度,要在小山的另一邊同時施工.為了使開挖點在直線上,現(xiàn)在上取一點,外取一點,測得,.求開挖點到點的距離.

(精確到米)參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,DEAB的垂直平分線,AD恰好平分∠BAC.若DE1,則BC的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH3.4m.當起重臂AC長度為9m,張角∠HAC118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)八年級學(xué)生的睡眠情況,隨機抽取了該區(qū)八年級學(xué)生部分學(xué)生進行調(diào)查.已知D組的學(xué)生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計圖表.

一、學(xué)生睡眠情況分組表(單位:小時)

組別

睡眠時間

二、學(xué)生睡眠情況統(tǒng)計圖

根據(jù)圖表提供的信息,回答下列問題:

1)試求八年級學(xué)生睡眠情況統(tǒng)計圖中的a的值及a對應(yīng)的扇形的圓心角度數(shù);

2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學(xué)生有3250人,試估計該區(qū)八年級學(xué)生睡眠時間合格的共有多少人?

3)如果將各組別學(xué)生睡眠情況分組的最小值(如C組別中,取),B、CD三組學(xué)生的平均睡眠時間作為八年級學(xué)生的睡眠時間的依據(jù).試求該區(qū)八年級學(xué)生的平均睡眠時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G是邊長為4的正方形ABCD的邊BC上的一點,矩形DEFG的邊EFA,GD=5.

(1)指出圖中所有的相似三角形;

(2)求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題是真命題的是(

A.三角形的三條高線相交于三角形內(nèi)一點

B.等腰三角形的中線與高線重合

C.三邊長為的三角形為直角三角形

D.到線段兩端距離相等的點在這條線段的垂直平分線上

查看答案和解析>>

同步練習(xí)冊答案