【題目】如圖,在中,,點為邊上的動點,點從點出發(fā),沿邊向點運動,當運動到點時停止,若設點運動的時間為秒,點運動的速度為每秒2個單位長度.
(1)當時,= ,= ;
(2)求當為何值時,是直角三角形,說明理由;
(3)求當為何值時,,并說明理由.
【答案】(1)CD=4,AD=16;(2)當t=3.6或10秒時,是直角三角形,理由見解析;(3)當t=7.2秒時,,理由見解析
【解析】
(1)根據(jù)CD=速度×時間列式計算即可得解,利用勾股定理列式求出AC,再根據(jù)AD=AC-CD代入數(shù)據(jù)進行計算即可得解;
(2)分①∠CDB=90°時,利用△ABC的面積列式計算即可求出BD,然后利用勾股定理列式求解得到CD,再根據(jù)時間=路程÷速度計算;②∠CBD=90°時,點D和點A重合,然后根據(jù)時間=路程÷速度計算即可得解;
(3)過點B作BF⊥AC于F,根據(jù)等腰三角形三線合一的性質(zhì)可得CD=2CF,再由(2)的結(jié)論解答.
解:(1)t=2時,CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,
∴AD=AC-CD=20-4=16;
(2)①∠CDB=90°時,
∴解得BD=9.6,
∴
t=7.2÷2=3.6秒;
②∠CBD=90°時,點D和點A重合,
t=20÷2=10秒,
綜上所述,當t=3.6或10秒時,是直角三角形;
(3)如圖,過點B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,
∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴當t=7.2秒時,,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=-x2+bx+c與直線y=-x的交點A、B的橫坐標分別為2和.點P是直線上方拋物線上的一動點,過點P作PD⊥AB于點D,作PE⊥x軸交AB于點E.
(1)直接寫出點A、B的坐標;
(2)求拋物線的關系式;
(3)判斷△OBC形狀,并說明理由;
(4)設點P的橫坐標為n,線段PD的長為y,求y關于n的函數(shù)關系式;
(5)定義符號min{a,b)}的含義為:當a≥b時,min{a,b}=b;當a<b時,min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接寫出min{-x2+bx+c,-x}的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2+2x-3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸為直線l,點D(-4,n)在拋物線上.
(1)求直線CD的解析式;
(2)E為直線CD下方拋物線上的一點,連接EC,ED,當△ECD的面積最大時,在直線l上取一點M,過M作y軸的垂線,垂足為點N,連接EM,BN,若EM=BN時,求EM+MN+BN的值.
(3)將拋物線y=x2+2x-3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過原點O,y′與x軸的另一個交點為F,設P是拋物線y′上任意一點,點Q在直線l上,△PFQ能否成為以點P為直角頂點的等腰直角三角形?若能,直接寫出點P的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交于點A,與y軸交于點B(0,2),且與正比例函數(shù)y=x的圖象交于點C(m,3).
(1)求一次函數(shù)y=kx+b(k≠0)的函數(shù)關系式;
(2)△AOC的面積為______;
(3)若點M在第二象限,△MAB是以AB為直角邊的等腰直角三角形,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點,過點做直線平行于軸,點關于直線對稱點為.
(1)求點的坐標;
(2)點在直線上,且位于軸的上方,將沿直線翻折得到,若點恰好落在直線上,求點的坐標和直線的解析式;
(3)設點在直線上,點在直線上,當為等邊三角形時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中踏集團銷售某種商品,每件進價為10元。在銷售過程中發(fā)現(xiàn),平均每天的銷售量y(件)與銷售價x(元/件)(不低于進價)之間的關系可近似的看做一次函數(shù):;
(1)求中踏集團平均每天銷售這種商品的利潤w(元)與銷售價x之間的函數(shù)關系式;
(2)當這種商品的銷售價為多少元時,可以獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年6月,某中學結(jié)合廣西中小學閱讀素養(yǎng)評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應的圓心角的度數(shù);
(4)如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M、N是平行四邊形ABCD對角線BD上兩點.
(1)若BM=MN=DN,求證:四邊形AMCN為平行四邊形;
(2)若M、N為對角線BD上的動點(均可與端點重合),設BD=12cm,點M由點B向點D勻速運動,速度為2(cm/s),同時點N由點D向點B勻速運動,速度為 a(cm/s),運動時間為t(s).若要使四邊形AMCN為平行四邊形,求a的值及t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com