【題目】如圖,已知拋物線y=-x2+bx+c與直線y=-x的交點(diǎn)A、B的橫坐標(biāo)分別為2.點(diǎn)P是直線上方拋物線上的一動(dòng)點(diǎn),過點(diǎn)PPD⊥AB于點(diǎn)D,作PE⊥x軸交AB于點(diǎn)E.

(1)直接寫出點(diǎn)A、B的坐標(biāo);

(2)求拋物線的關(guān)系式;

(3)判斷△OBC形狀,并說明理由;

(4)設(shè)點(diǎn)P的橫坐標(biāo)為n,線段PD的長(zhǎng)為y,求y關(guān)于n的函數(shù)關(guān)系式;

(5)定義符號(hào)min{a,b)}的含義為:當(dāng)a≥b時(shí),min{a,b}=b;當(dāng)a<b時(shí),min{a,b}=a.如min{2,0}=0,min{-3,4}=-3.直接寫出min{-x2+bx+c,-x}的最大值.

【答案】(1)A(2-2),點(diǎn)B(-,);(2)y=-x2+x+1;(3)△OBC是等腰直角三角形.理由見解析;(4)y=-n2+n+;(5)min{-x2+x+1,-x}最大值為.

【解析】

(1)A、B的橫坐標(biāo)分別為2-,代入解析式y=-x可得點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用待定系數(shù)法可求解析式;
(3)由根據(jù)兩點(diǎn)距離公式可求OB,OC,BC的長(zhǎng)度,可得BC=OB,根據(jù)勾股定理逆定理可判斷∠OBC=90°,即可求△OBC形狀;
(4)由點(diǎn)P的橫坐標(biāo)為n,可求PE=-n2+n+1,根據(jù)題意可求∠BOC=45°=∠PED,根據(jù)勾股定理可求PD=y=PE,即可求y關(guān)于n的函數(shù)關(guān)系式;
(5)分①-x2+x+1≥-x時(shí),②-x2+x+1<-x時(shí),兩種情況討論,可求min{-x2+x+1,-x}最大值.

(1)A、B的橫坐標(biāo)分別為2,且點(diǎn)A,點(diǎn)B在直線y=-x,

A(2-2),點(diǎn)B(-,),

(2)∵拋物線y=-x2+bx+c經(jīng)過點(diǎn)A,點(diǎn)B,

,

解得:b=,c=1,

∴拋物線解析式y=-x2+x+1,

(3)OBC是等腰直角三角形.

理由如下:∵拋物線y=-x2+x+1y軸交于點(diǎn)C,

∴當(dāng)x=0時(shí),則y=1,

即點(diǎn)C坐標(biāo)(0,1),

又∵點(diǎn)O(0,0),點(diǎn)B(-,),

OC=1,

OB==,

BC==,

OB=BC,

OB2+BC2=1,OC2=1,

OB2+BC2=OC2

∴∠CBO=90°.

∴△OBC是等腰直角三角形.

(4)∵點(diǎn)P的橫坐標(biāo)為n,

∴點(diǎn)P(n,-n2+n+1),點(diǎn)E的坐標(biāo)(n,-n),

PE=-n2+n+1-(-n)=-n2+n+1,

∵直線y=-xx軸所成銳角為45°,

∴∠BOC=45°,

PEy,

∴∠PED=BOC=45°,且PDAB,

PE=PD,

y=PE=(-n2+n+1)=-n2+n+,

(5),

-x2+x+1≥-x時(shí),min{-x2+x+1,-x}=-x,

-x2+x+1≥-x,

解得:-≤x≤2,

-2≤min{-x2+x+1,-x}≤,

-x2+x+1<-x時(shí),min{-x2+x+1,-x}=-x2+x+1,

-x2+x+1<-x,

解得:x<-x>2,

當(dāng)x<-時(shí),min{-x2+x+1,-x}<,

當(dāng)x>2時(shí),min{-x2+x+1,-x}<-2,

綜上所述:min{-x2+x+1,-x}最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)計(jì)劃從廠家購(gòu)進(jìn)甲、乙兩種不同型號(hào)的電視機(jī),已知進(jìn)價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元.

(1)若商場(chǎng)同時(shí)購(gòu)進(jìn)這兩種不同型號(hào)的電視機(jī)50臺(tái),金額不超過76000元,商場(chǎng)有幾種進(jìn)貨方案,并寫出具體的進(jìn)貨方案.

(2)(1)的條件下,若商場(chǎng)銷售一臺(tái)甲、乙型號(hào)的電視機(jī)的銷售價(jià)分別為1650元、2300元,以上進(jìn)貨方案中,哪種進(jìn)貨方案獲利最多?最多為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BAC=DAF=90°,AB=ACAD=AF,點(diǎn)D、EBC邊上的兩點(diǎn),且DAE=45°,連接EFBF,則下列結(jié)論:①△AED≌△AEF ABE∽△ACD,BEDCDEBE2DC2=DE2,其中正確的有 個(gè)

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)內(nèi)任意一點(diǎn),,點(diǎn)和點(diǎn)分別是射線和射線上的動(dòng)點(diǎn),周長(zhǎng)的最小值是5,則的度數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將每件進(jìn)價(jià)為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過降低售價(jià)、增加銷售量的方法來提高利潤(rùn).經(jīng)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品每件每降價(jià)5元,每天的銷售量可增加50件.設(shè)商品降價(jià)x元,每天銷售該商品獲得的利潤(rùn)為y元.

(1)求y(元)關(guān)于x(元)的函數(shù)關(guān)系式,并寫出x的取值范圍.

(2)求當(dāng)x取何值時(shí)y最大?并求出y的最大值.

(3)若要是每天銷售利潤(rùn)為3750元,且盡可能最大的向顧客讓利,應(yīng)將該商品降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游.

租車公司:按日收取固定租金80元,另外再按租車時(shí)間計(jì)費(fèi).

共享汽車:無固定租金,直接以租車時(shí)間(時(shí))計(jì)費(fèi).

如圖是兩種租車方式所需費(fèi)用y1元)、y2(元)與租車時(shí)間x(時(shí))之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:

(1)分別求出y1、y2x的函數(shù)表達(dá)式;

(2)請(qǐng)你幫助小麗一家選擇合算的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點(diǎn),ABC=60°.若動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)出發(fā)沿著A→B→A方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0≤t<3),連接EF,當(dāng)BEF是直角三角形時(shí),t(s)的值為【 】

A. B.1 C或1 D.或1或

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老張勻速開車從A市送貨到B市,途中汽車出現(xiàn)小故障,老張只能降速為原速的一半行駛等待B市的修車師傅小李前往修車,半小時(shí)后,小李與老張相遇,立馬開始修車,車修好后,老張又提速為原速的繼續(xù)開車送貨到B市,小李以原速返回B市,老張和小李距離B市的路程y(千米)與老張出發(fā)的時(shí)間x(小時(shí))的函數(shù)圖象分別如圖所示(途中其它損耗時(shí)間忽略不計(jì)),則小李在返回到B市時(shí),老張距B______千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,,點(diǎn)邊上的動(dòng)點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿邊向點(diǎn)運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到點(diǎn)時(shí)停止,若設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,點(diǎn)運(yùn)動(dòng)的速度為每秒2個(gè)單位長(zhǎng)度.

(1)當(dāng)時(shí),= ,= ;

(2)求當(dāng)為何值時(shí),是直角三角形,說明理由;

(3)求當(dāng)為何值時(shí),,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案